Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a trai...Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant No.51478212)the Education Ministry Doctoral Tutor Foundation of China(Grant No.20136201110003)
文摘Loess tunnels are widely used in transportation engineering and are irreplaceable parts of transportation infrastructure. In this paper, a dynamic finite element method is used to analyze the coupled effects of a train vibration load and rainfall seepage. By calculating the variation in the safety factor of a loess tunnel because of the effects of various factors, such as different rainfall intensities and soil thicknesses, the dynamic stability of the loess tunnel is studied under the condition of a near-field pulse-like earthquake. The results show that the security and stability of the tunnel decrease gradually with decreasing burial depth. In addition, the plastic strain of the tunnel is mainly distributed on both sides of the vault and the feet, and the maximum value of the critical strain occurs on both sides of the arch feet. Because of the effects of the train vibration load and rainfall seepage, the safety factor of the loess tunnel structure decreases to a certain degree. Moreover, the range and maximum value of the plastic strain increase to various degrees.