The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequ...The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequence known so far (with a basal age of about 8 Ma) and comparison of the results with oxygen isotope curves from North Atlantic marine sediments, 4 stages of the evolution of the Asian winter monsoon were clearly demonstrated. During the first stage, between about 8.1 and 4.3 Ma, there was no relation between Asian winter monsoon and Northern Hemisphere ice volume and high latitude climate inferred from marine sediments. A weak relation developed during the second stage, about 4.3 to 3.5 Ma. During the third stage (3.5 to 2.6 Ma) an Asian winter monsoon system similar to the present formed, initiating a stronger relation between the winter mcnsoon and Northern Hemisphere ice volume and high latitude climate. In the final stage (2.6 to 0 Ma) the present Asian winter monsoon system was fortified and stabilized and changes in the winter monsoon system were almost in phase with Northern Hemisphere ice volume and climate. The staggered uplift of Tibetan Plateau at ~8, 3.6, 2.6 Ma and later might be the driving force for the evolution of the Asian winter monsoon.展开更多
The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the...The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.展开更多
Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenv...Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenvironment and paleoclimate. In this paper, field emission scanning electron microscope and high-resolution transmission electron microscope observations on the red clay-loess-paleosol of the Renjiapo profile at Lingtai, Gansu Province indicate that palygorskite occurs widely in red clay sequences formed before 3.6 Ma, but no occurrence has been found in eolian sediments since 3.2 Ma. Micromorphological features and microstructure of palygorskite show that it is an autogenic mineral formed during pedogenesis, and transformed from iilite-montmorilionite under the pore water action. In the Lingtai profile, the disappearance horizon of palygorskite is consistent with those of increasing magnetic susceptibility, dust flux and depositional rate. The distribution of palygorskite in the profile indicates that the interval of around 3.6 Ma was an important transformation period of the East Asian paleomonsoon, when changes took place in the East Asia paleoclimate pattern, i.e. a high-frequency strong fluctuation alternative evolution of the environment. Therefore, palygorskite is a key indicator mineral of the East Asian paleomonsoon evolution of that time.展开更多
Greenish clays often occur as thin layers in Early Cretaceous shallow-water carbonatesediments of Istria where they mark the top of fining upwards sequences. When they showevidence of subaerial exposure and pedogenesi...Greenish clays often occur as thin layers in Early Cretaceous shallow-water carbonatesediments of Istria where they mark the top of fining upwards sequences. When they showevidence of subaerial exposure and pedogenesis they are considered paleosols. The claymineralogical composition is as follow: (1) randomly oriented I/S mixed layer, (2) regularlyoriented I/S mixed layer, (3) illitic material, (4) kaolinite and (5) chlorite. The insoluble limestoneresidue situated immediately below the greenish clays is dominated by smectite, and also containskaolinite and illitic material. The very high smectite content in the insoluble residue is probablythe result of additions of volcanic dust during carbonate sedimentation. That clay mineralcomposition in the pelitic material clearly indicates the influence of both pedogenic and diageneticprocesses. It may also indicate additional volcanic dust contribution before and during thesubaerial exposure.展开更多
A typical sequence of fluvial terraces and aeolian deposits overlying these ter- races were multidisciplinary investigated. New evidences for uplift process of the northeastern Qinghai-Tibetan Plateau in the past 14 m...A typical sequence of fluvial terraces and aeolian deposits overlying these ter- races were multidisciplinary investigated. New evidences for uplift process of the northeastern Qinghai-Tibetan Plateau in the past 14 million years were obtained. At least 11 river terraces along Huangshui, the first-class tributary of Yellow River, at the Xining-Huzhu region are identi- fied. While the first one (T1) is classified as an accumulation terrace, the others are all basement river terraces, which consist of the Tertiary sandstone and siltstone bedrock, fluvial gravel and pebbles and the overlying aeolian loess-Red Clay deposit. Samples from the aeolian deposits were examined for paleomagnetic stratigraphic reconstruction (1030 samples), luminescence dating (16 samples), magnetic susceptibility and grain-size distribution (more than 4000 sam- ples). The luminescence dating and stratigraphic correlation suggest that terraces of Tll, T10, T8, T7, T3, T2, T1 were formed at 14, 11.3, 1.55, 1.2, 0.15, 0.07 and 0.01 million years ago, re- spectively. Sedimentological analysis and geomorphological observation indicate that formation and evolution of these terraces were mainly driven by tectonic uplift. Therefore, the terrace se- quence provides an ideal geological record, of the uplift process of the northeastern during the past 14 million years, and the timings of the terraces formation are regarded as the timings of tectonic uplift. The significant uplifting events took place at 14, 11.3, 1.2 and 0.15 mil- lion years ago, respectively. The fluvial incision at the Xining-Huzhu region is less than 100 m during a period of ~12 million years in the Miocene era (between the Tll and T9), while the Huangshui River had incised 432 m during the past 1.2 million years (from T7 to the present floodplain). The river incision process clearly demonstrates that accelerated rising of the north- eastern Qinghai-Tibet Plateau during the late Cenozoic, and provides new evidence of previous thoughts. There was a significant readjustment of the fluvial catchment during 1.55--1.2 million years ago: before this time, the paleoriver flowed to southwest. After this time the Huangshui River flows to southeast. A tectonic movement dominates reorganization of this fluvial system.展开更多
Loess-paleosol sequence and red clay\ deposit represent strikingly different environments. In northern China, the shift from the development of the red clay formation to the large-scale deposition of loess marked an i...Loess-paleosol sequence and red clay\ deposit represent strikingly different environments. In northern China, the shift from the development of the red clay formation to the large-scale deposition of loess marked an important climatic and geological event. A lot of researchers in China thus put the Pliocene/Pleistocene boundary at the contact between loess and red clay deposit. However, problems remain to be solved on the accurate dating,展开更多
基金the CAS "Hundred Talents Project" (Renjiaozi [2000] 05), the Na-tional Key Project for Basic Research on Tibetan Plateau (Grant No. G1998040809) and the MOE Key Projects on Sci-Technologic Research.
文摘The evolution and driving mechanism of the Asian winter monsoon system are of great importance to understanding the present-day climate. Through high-resolution particle size analysis of the oldest loess-red clay sequence known so far (with a basal age of about 8 Ma) and comparison of the results with oxygen isotope curves from North Atlantic marine sediments, 4 stages of the evolution of the Asian winter monsoon were clearly demonstrated. During the first stage, between about 8.1 and 4.3 Ma, there was no relation between Asian winter monsoon and Northern Hemisphere ice volume and high latitude climate inferred from marine sediments. A weak relation developed during the second stage, about 4.3 to 3.5 Ma. During the third stage (3.5 to 2.6 Ma) an Asian winter monsoon system similar to the present formed, initiating a stronger relation between the winter mcnsoon and Northern Hemisphere ice volume and high latitude climate. In the final stage (2.6 to 0 Ma) the present Asian winter monsoon system was fortified and stabilized and changes in the winter monsoon system were almost in phase with Northern Hemisphere ice volume and climate. The staggered uplift of Tibetan Plateau at ~8, 3.6, 2.6 Ma and later might be the driving force for the evolution of the Asian winter monsoon.
基金supported by the National Natural Science Foundation of China(NO:40202019,90102017,40121303)National Basic Research Program of China(2004CB720202)China Postdoctoral Fund
文摘The widely distributed red clay sediment underlying the Chinese Loess Plateau truly records the Neogene environmental evolution, and its genesis and development are intrinsically related to the uplift processes of the Tibetan Plateau and the evolution of East Asia monsoon system. In this paper, a detailed magnetostratigraphy of a loess-red clay section (107°13′E, 35°02′N) from the central Loess Plateau is reported. The loess-red clay sequence is composed of 175 m Quaternary loess-paleosol sequence and 128 m Neogene red clay sediments. Based on the correlation with the standard geomagnetic polarity time scale, the paleomagnetic results indicate that the age of Chaona red clay sequence extends to 08.1 Ma, which is the older red clay deposition in the central Chinese Loess Plateau. The commencement of red clay at -8.1 Ma may imply that the Ordos planation surface was broken by the movement of the Haiyuan-Liupanshan Faults, which was related to the uplift of the Tibetan Plateau induced by the collision of India Plate and Eurasian Plate. And the western part adjacent to the Tibetan Plateau was uplifted to form the embryo of the Liupan Shan (Mts.) and the eastern part was down-faulted to receive red clay deposition. We link this faulting to an initial uplift of the Tibetan Plateau. The undulating nature of the broken Ordos planation surface may explain the chronological differences and depth discrepancies among various cross-sections of red clay.
基金the National Natural Science Foundation of China(Grant No.40772032);the National Key Basic Research Project 973(Grant No. 2007CB815603).
文摘Palygorskite is a typical indicator mineral of the arid and strong evaporation environment. Distribution of palygorskite in loess-red clay sequences may act as an important indicator for reconstruction of the paleoenvironment and paleoclimate. In this paper, field emission scanning electron microscope and high-resolution transmission electron microscope observations on the red clay-loess-paleosol of the Renjiapo profile at Lingtai, Gansu Province indicate that palygorskite occurs widely in red clay sequences formed before 3.6 Ma, but no occurrence has been found in eolian sediments since 3.2 Ma. Micromorphological features and microstructure of palygorskite show that it is an autogenic mineral formed during pedogenesis, and transformed from iilite-montmorilionite under the pore water action. In the Lingtai profile, the disappearance horizon of palygorskite is consistent with those of increasing magnetic susceptibility, dust flux and depositional rate. The distribution of palygorskite in the profile indicates that the interval of around 3.6 Ma was an important transformation period of the East Asian paleomonsoon, when changes took place in the East Asia paleoclimate pattern, i.e. a high-frequency strong fluctuation alternative evolution of the environment. Therefore, palygorskite is a key indicator mineral of the East Asian paleomonsoon evolution of that time.
文摘Greenish clays often occur as thin layers in Early Cretaceous shallow-water carbonatesediments of Istria where they mark the top of fining upwards sequences. When they showevidence of subaerial exposure and pedogenesis they are considered paleosols. The claymineralogical composition is as follow: (1) randomly oriented I/S mixed layer, (2) regularlyoriented I/S mixed layer, (3) illitic material, (4) kaolinite and (5) chlorite. The insoluble limestoneresidue situated immediately below the greenish clays is dominated by smectite, and also containskaolinite and illitic material. The very high smectite content in the insoluble residue is probablythe result of additions of volcanic dust during carbonate sedimentation. That clay mineralcomposition in the pelitic material clearly indicates the influence of both pedogenic and diageneticprocesses. It may also indicate additional volcanic dust contribution before and during thesubaerial exposure.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.40325007 and 90102017) the Outstanding Overseas Chinese Scholars Fund of the ChineseAcademy of Sciences (Grant No.2003-01-07).
文摘A typical sequence of fluvial terraces and aeolian deposits overlying these ter- races were multidisciplinary investigated. New evidences for uplift process of the northeastern Qinghai-Tibetan Plateau in the past 14 million years were obtained. At least 11 river terraces along Huangshui, the first-class tributary of Yellow River, at the Xining-Huzhu region are identi- fied. While the first one (T1) is classified as an accumulation terrace, the others are all basement river terraces, which consist of the Tertiary sandstone and siltstone bedrock, fluvial gravel and pebbles and the overlying aeolian loess-Red Clay deposit. Samples from the aeolian deposits were examined for paleomagnetic stratigraphic reconstruction (1030 samples), luminescence dating (16 samples), magnetic susceptibility and grain-size distribution (more than 4000 sam- ples). The luminescence dating and stratigraphic correlation suggest that terraces of Tll, T10, T8, T7, T3, T2, T1 were formed at 14, 11.3, 1.55, 1.2, 0.15, 0.07 and 0.01 million years ago, re- spectively. Sedimentological analysis and geomorphological observation indicate that formation and evolution of these terraces were mainly driven by tectonic uplift. Therefore, the terrace se- quence provides an ideal geological record, of the uplift process of the northeastern during the past 14 million years, and the timings of the terraces formation are regarded as the timings of tectonic uplift. The significant uplifting events took place at 14, 11.3, 1.2 and 0.15 mil- lion years ago, respectively. The fluvial incision at the Xining-Huzhu region is less than 100 m during a period of ~12 million years in the Miocene era (between the Tll and T9), while the Huangshui River had incised 432 m during the past 1.2 million years (from T7 to the present floodplain). The river incision process clearly demonstrates that accelerated rising of the north- eastern Qinghai-Tibet Plateau during the late Cenozoic, and provides new evidence of previous thoughts. There was a significant readjustment of the fluvial catchment during 1.55--1.2 million years ago: before this time, the paleoriver flowed to southwest. After this time the Huangshui River flows to southeast. A tectonic movement dominates reorganization of this fluvial system.
文摘Loess-paleosol sequence and red clay\ deposit represent strikingly different environments. In northern China, the shift from the development of the red clay formation to the large-scale deposition of loess marked an important climatic and geological event. A lot of researchers in China thus put the Pliocene/Pleistocene boundary at the contact between loess and red clay deposit. However, problems remain to be solved on the accurate dating,