In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strateg...In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.展开更多
Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for r...Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.展开更多
Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at th...Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.展开更多
We study the convergence rate of Bergman metrics on the class of polarized pointed Kähler n-manifolds(M,L,g,x)with Vol(B1(x))>v and|sec|≤K on M.Relying on Tian’s peak section method(Tian in J Differ Geom 32(...We study the convergence rate of Bergman metrics on the class of polarized pointed Kähler n-manifolds(M,L,g,x)with Vol(B1(x))>v and|sec|≤K on M.Relying on Tian’s peak section method(Tian in J Differ Geom 32(1):99-130,1990),we show that the C^(1,α)convergence of Bergman metrics is uniform.In the end,we discuss the sharpness of our estimates.展开更多
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation...Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .展开更多
Background:Failure to rescue has been an effective quality metric in congenital heart surgery.Conversely,mor-bidity and mortality depend greatly on non-modifiable individual factors and have a weak correlation with be...Background:Failure to rescue has been an effective quality metric in congenital heart surgery.Conversely,mor-bidity and mortality depend greatly on non-modifiable individual factors and have a weak correlation with better-quality performance.We aim to measure the complications,mortality,and risk factors in pediatric patients undergoing congenital heart surgery in a high-complexity institution located in a middle-income country and compare it with other institutions that have conducted a similar study.Methods:A retrospective observational study was conducted in a high-complexity service provider institution,in Cali,Colombia.All pediatric patients undergoing any congenital heart surgery between 2019 and 2022 were included.The main outcomes evaluated in the study were complication,mortality,and failure to rescue rate.Univariate and multivariate logistic regression analysis was performed with mortality as the outcome variable.Results:We evaluated 308 congenital heart sur-geries.Regarding the outcomes,201(65%)complications occurred,23(7.5%)patients died,and the FTR of the entire cohort was 11.4%.The presence of a postoperative complication(OR 14.88,CI 3.06–268.37,p=0.009),age(OR 0.79,CI 0.57–0.96,p=0.068),and urgent/emergent surgery(OR 8.14,CI 2.97–28.66,p<0.001)were the most significant variables in predicting mortality.Conclusions:Failure to rescue is an effective and comparable quality measure in healthcare institutions and is the major contributor to postoperative mortality in congenital heart surgeries.Despite our higher mortality and complication rate,we obtained a comparable failure to rescue rate to high-income countries’health institutions.展开更多
In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to b...In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.展开更多
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression...We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.展开更多
In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit...In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.展开更多
In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. I...In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.展开更多
In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild ...In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild metric. In this article, by starting from this correct Schwarzschild metric, we obtain the formulas of the correct gravitational potential and of the correct gravitational force in the case described by this metric. Moreover, we analyse these correct results and their consequences. Finally, we propose some possible crucial experiments between the commonly accepted theory and the same theory corrected according to this article.展开更多
This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are c...This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are computed. Then, the forward and backward data slices for this attribute are generated by using the class as the slice scope and are combined to compute the corresponding class data slice. Finally, the class cohesion is computed based on all class data slices for the attributes. Compared to traditional cohesion metrics that use methods as the slice scope, the proposed metrics that use a single class as slice scope take into account the possible interactions between the methods. The experimental results show that class cohesion can be more accurately measured when using the class as the slice scope.展开更多
文摘In this article,we study Kahler metrics on a certain line bundle over some compact Kahler manifolds to find complete Kahler metrics with positive holomorphic sectional(or bisectional)curvatures.Thus,we apply a strategy to a famous Yau conjecture with a co-homogeneity one geometry.
文摘Assessment of rock mass quality significantly impacts the design and construction of underground and open-pit mines from the point of stability and economy.This study develops the novel Gromov-Hausdorff distance for rock quality(GHDQR)methodology for rock mass quality rating based on multi-criteria grey metric space.It usually presents the quality of surrounding rock by classes(metric spaces)with specified properties and adequate interval-grey numbers.Measuring the distance between surrounding rock sample characteristics and existing classes represents the core of this study.The Gromov-Hausdorff distance is an especially useful discriminant function,i.e.,a classifier to calculate these distances,and assess the quality of the surrounding rock.The efficiency of the developed methodology is analyzed using the Mean Absolute Percentage Error(MAPE)technique.Seven existing methods,such as the Gaussian cloud method,Discriminant method,Mutation series method,Artificial neural network(ANN),Support vector machine(SVM),Grey wolf optimizer and Support vector classification method(GWO-SVC)and Rock mass rating method(RMR)are used for comparison with the proposed GHDQR method.The share of the highly accurate category of 85.71%clearly indicates compliance with actual values obtained by the compared methods.The results of comparisons showed that the model enables objective,efficient,and reliable assessment of rock mass quality.
文摘Using the Raychaudhuri equation, we associate quantum probability amplitudes (propagators) to equatorial principal ingoing and outgoing null geodesic congruences in the Kerr metric. The expansion scalars diverge at the ring singularity;however, the propagators remain finite, which is an indication that at the quantum level singularities might disappear or, at least, become softened.
文摘We study the convergence rate of Bergman metrics on the class of polarized pointed Kähler n-manifolds(M,L,g,x)with Vol(B1(x))>v and|sec|≤K on M.Relying on Tian’s peak section method(Tian in J Differ Geom 32(1):99-130,1990),we show that the C^(1,α)convergence of Bergman metrics is uniform.In the end,we discuss the sharpness of our estimates.
文摘Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .
基金approved by the Institutional Ethics Committee(approval number 628-2022 Act No.I22-112 of November 02,2022)following national and international recommendations for human research.In。
文摘Background:Failure to rescue has been an effective quality metric in congenital heart surgery.Conversely,mor-bidity and mortality depend greatly on non-modifiable individual factors and have a weak correlation with better-quality performance.We aim to measure the complications,mortality,and risk factors in pediatric patients undergoing congenital heart surgery in a high-complexity institution located in a middle-income country and compare it with other institutions that have conducted a similar study.Methods:A retrospective observational study was conducted in a high-complexity service provider institution,in Cali,Colombia.All pediatric patients undergoing any congenital heart surgery between 2019 and 2022 were included.The main outcomes evaluated in the study were complication,mortality,and failure to rescue rate.Univariate and multivariate logistic regression analysis was performed with mortality as the outcome variable.Results:We evaluated 308 congenital heart sur-geries.Regarding the outcomes,201(65%)complications occurred,23(7.5%)patients died,and the FTR of the entire cohort was 11.4%.The presence of a postoperative complication(OR 14.88,CI 3.06–268.37,p=0.009),age(OR 0.79,CI 0.57–0.96,p=0.068),and urgent/emergent surgery(OR 8.14,CI 2.97–28.66,p<0.001)were the most significant variables in predicting mortality.Conclusions:Failure to rescue is an effective and comparable quality measure in healthcare institutions and is the major contributor to postoperative mortality in congenital heart surgeries.Despite our higher mortality and complication rate,we obtained a comparable failure to rescue rate to high-income countries’health institutions.
基金Supported by the National Natural Science Foundation of China(11771020,12171005).
文摘In this paper,we study a class of Finsler metrics defined by a vector field on a gradient Ricci soliton.We obtain a necessary and sufficient condition for these Finsler metrics on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.Then we determine the Ricci curvature of navigation Finsler metrics of isotropic S-curvature on a gradient Ricci soliton generalizing result only known in the case when such soliton is of Einstein type.As its application,we obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.
基金Project supported by the Beijing Natural Science Foundation(Grant No.1232026)the Qinxin Talents Program of BISTU(Grant No.QXTCP C201711)+2 种基金the R&D Program of Beijing Municipal Education Commission(Grant No.KM202011232017)the National Natural Science Foundation of China(Grant No.12304190)the Research fund of BISTU(Grant No.2022XJJ32).
文摘We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers.
基金supported by the NSFC(11871257,12071130)supported by the NSFC(11971165)。
文摘In this article,we first establish an asymptotically sharp result on the higher order Fréchet derivatives for bounded holomorphic mappings f(x)=f(0)+∞∑s=1Dskf(0)(x^(sk))/(sk)!:B_(X)→B_(Y),where B_X is the unit ball of X.We next give a sharp result on the first order Fréchet derivative for bounded holomorphic mappings F(X)=F(0+)∞∑s=KD^(s)f(0)(x^(8)/s!):B_(X)→B_(Y),where B_(X)is the unit ball of X.The results that we derive include some results in several complex variables,and extend the classical result in one complex variable to several complex variables.
文摘In a very recent article of mine I have corrected the traditional derivation of the Schwarzschild metric thus arriving to formulate a correct Schwarzschild metric different from the traditional Schwarzschild metric. In this article, starting from this correct Schwarzschild metric, I also propose corrections to the other traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics on the basis of the fact that these metrics should be equal to the correct Schwarzschild metric in the borderline case in which they reduce to the case described by this metric. In this way, we see that, like the correct Schwarzschild metric, also the correct Reissner-Nordstrøm, Kerr and Kerr-Newman metrics do not present any event horizon (and therefore do not present any black hole) unlike the traditional Reissner-Nordstrøm, Kerr and Kerr-Newman metrics.
文摘In a recent article, we have corrected the traditional derivation of the Schwarzschild metric, thus obtaining the formulation of the correct Schwarzschild metric, which is different from the traditional Schwarzschild metric. In this article, by starting from this correct Schwarzschild metric, we obtain the formulas of the correct gravitational potential and of the correct gravitational force in the case described by this metric. Moreover, we analyse these correct results and their consequences. Finally, we propose some possible crucial experiments between the commonly accepted theory and the same theory corrected according to this article.
基金The National Natural Science Foundation of China(No.60425206,60633010)the High Technology Research and Development Program of Jiangsu Province(No.BG2005032)
文摘This paper suggests that a single class rather than methods should be used as the slice scope to compute class cohesion. First, for a given attribute, the statements in all methods that last define the attribute are computed. Then, the forward and backward data slices for this attribute are generated by using the class as the slice scope and are combined to compute the corresponding class data slice. Finally, the class cohesion is computed based on all class data slices for the attributes. Compared to traditional cohesion metrics that use methods as the slice scope, the proposed metrics that use a single class as slice scope take into account the possible interactions between the methods. The experimental results show that class cohesion can be more accurately measured when using the class as the slice scope.