This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure change...This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.展开更多
实现粮食的持续稳定增长是保障区域粮食安全的关键。分解各因素对粮食生产的作用及影响强度,识别其主导因素,对提升粮食产量具有积极意义。该文运用对数平均迪氏分解方法(logarithmic mean weigh division index method,LMDI)建立因素...实现粮食的持续稳定增长是保障区域粮食安全的关键。分解各因素对粮食生产的作用及影响强度,识别其主导因素,对提升粮食产量具有积极意义。该文运用对数平均迪氏分解方法(logarithmic mean weigh division index method,LMDI)建立因素分解模型,定量评价并对比分析1980-2010年间黄淮海地区县域粮食生产变动的区域因素。结果表明,1)1980-2010年间,黄淮海地区粮食产量增加了1.01亿t,县域粮食产量"南高北低"的空间分异格局明显,苏北、皖北、豫东和鲁西地区的粮食增产显著;2)4个因素中,粮食单产对粮食产量变化起到显著的正向促进作用,复种指数次之,而粮作比例和耕地面积在较大程度上抑制了黄淮海地区粮食产量的增加;3)县域粮食生产因素分解结果表明,县域之间在耕地面积、复种指数、粮作比例和粮食单产效应方面存在明显差异。总体而言,粮食单产效应叠加上复种指数效应使苏北、皖北和豫东多数县域粮食总产量显著增加;而粮作比例效应、复种指数效应和粮食单产效应的叠加使鲁西县域的粮食总产量增加明显。展开更多
“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据...“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据研究需要增加自变量,更好地分析相关因素对因变量的影响。以北京市为研究区,通过构建扩展的STIRPAT模型,分析人均地区生产总值(Gross Domestic Product,GDP)、人均汽车保有量、城市化率、第三产业GDP占比、能源消费强度与人均碳排放量的关系,并采用对数平均迪氏指数(Logarithmic Mean Divisia Index,LMDI)分解法分解能源消费强度。结果表明,产业结构和能源消费强度对人均碳排放量均有显著的正向影响。总体来看,要平衡经济发展与碳排放的关系,提高能源利用效率,推广可再生能源,降低能源消耗,减少碳排放。展开更多
Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carb...Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.展开更多
在“双碳”目标的背景下,作为全社会碳排放最主要的排放源,能源活动的碳减排尤为关键。为明确电力系统碳排放量、能源消费强度、产业结构等因素对能源系统碳排放的影响作用及贡献程度,基于灰色GM(1,1)模型对我国的能源消费总量进行预测...在“双碳”目标的背景下,作为全社会碳排放最主要的排放源,能源活动的碳减排尤为关键。为明确电力系统碳排放量、能源消费强度、产业结构等因素对能源系统碳排放的影响作用及贡献程度,基于灰色GM(1,1)模型对我国的能源消费总量进行预测,并进行模型检验以保证可行性。根据联合国政府间气候变化专门委员会(intergovernmental panel on climate change,IPCC)碳排放系数法,根据我国能源平衡表的数据对2015—2019年各行业碳排放量进行测算。在此基础上,利用对数平均迪氏指数法(logarithmic mean Divisia index,LMDI)构建碳排放分析模型,对结果标准化处理后分析各效应对能源系统碳排放量的影响程度。计算结果表明能源消费强度、人口数量、城镇化水平及电力碳排放量会促进能源系统碳排放增长,而能源消费强度、农村人口比重及产业结构起到了抑制作用。展开更多
[目的]评价黄河下游水资源生态承载状态,为地区水资源管理与规划提供理论依据。[方法]运用水资源生态足迹理论结合对数均值迪式指数分解法(logarithmic mean divisia index,LMDI)对2007—2020年黄河下游水资源生态足迹的时空分布特征及...[目的]评价黄河下游水资源生态承载状态,为地区水资源管理与规划提供理论依据。[方法]运用水资源生态足迹理论结合对数均值迪式指数分解法(logarithmic mean divisia index,LMDI)对2007—2020年黄河下游水资源生态足迹的时空分布特征及驱动机制进行核算分析,并通过灰色预测模型GM(1,1)对2021—2030年的水资源生态足迹变化趋势进行预测。[结果]黄河下游历年水资源生态足迹远高于生态承载力,水资源生态赤字现象严重;水资源生态足迹与生态赤字年际间均呈波动降低趋势,用水效率逐渐提高,农业用水是最大的水资源生态足迹账户;黄河三角洲是黄河下游水资源生态压力最大的区域,淄博、济南、郑州和泰安4市的生态压力相对较小;经济效应对黄河下游水资源生态足迹变化起正向主导作用,技术效应起负向主导作用;预测结果表明,2021—2030年黄河下游人均水资源生态赤字由0.387 hm^(2)/人降至0.359 hm^(2)/人。[结论]在生产力快速发展和用水结构优化调整等综合作用下,黄河下游地区用水效率逐渐提高,水资源生态压力有一定幅度的缓解。但由于该区域水资源生态赤字基数较大,未来水资源可持续利用形势依旧十分严峻,亟待进一步加强水资源的统筹管理,助力黄河下游地区高质量可持续发展。展开更多
文摘This paper aims to identify the main driving force for changes of total primary energy consumption in Beijing during the period of 1981-2005.Sectoral energy use was investigated when regional economic structure changed significantly.The changes of total primary energy consumption in Beijing are decomposed into production effects,structural effects and intensity effects using the additive version of the logarithmic mean Divisia index (LMDI) method.Aggregate decomposition analysis showed that the major contributor of total effect was made by the production effect fol- lowed by the intensity effect,and the structural effect was rela- tively insignificant.The total and production effects were all posi- tive.In contrast,the structural effect and intensity effect were all negative.Sectoral decomposition investigation indicated that the most effective way to slow down the growth rate of total primary energy consumption (TPEC) was to reduce the production of the energy-intensive industrial sectors and improving industrial en- ergy intensity.The results show that in this period,Beijing's economy has undergone a transformation from an industrial to a service economy.However,the structures of sectoral energy use have not been changed yet,and energy demand should be in- creasing until the energy-intensive industrial production to be reduced and energy intensity of the region reaches a peak.As sequence energy consumption data of sub-sectors are not available, only the fundamental three sectors are considered:agriculture, industry and service.However,further decomposition into secon- dary and tertiary sectors is definitely needed for detailed investi- gations.
文摘实现粮食的持续稳定增长是保障区域粮食安全的关键。分解各因素对粮食生产的作用及影响强度,识别其主导因素,对提升粮食产量具有积极意义。该文运用对数平均迪氏分解方法(logarithmic mean weigh division index method,LMDI)建立因素分解模型,定量评价并对比分析1980-2010年间黄淮海地区县域粮食生产变动的区域因素。结果表明,1)1980-2010年间,黄淮海地区粮食产量增加了1.01亿t,县域粮食产量"南高北低"的空间分异格局明显,苏北、皖北、豫东和鲁西地区的粮食增产显著;2)4个因素中,粮食单产对粮食产量变化起到显著的正向促进作用,复种指数次之,而粮作比例和耕地面积在较大程度上抑制了黄淮海地区粮食产量的增加;3)县域粮食生产因素分解结果表明,县域之间在耕地面积、复种指数、粮作比例和粮食单产效应方面存在明显差异。总体而言,粮食单产效应叠加上复种指数效应使苏北、皖北和豫东多数县域粮食总产量显著增加;而粮作比例效应、复种指数效应和粮食单产效应的叠加使鲁西县域的粮食总产量增加明显。
文摘“十四五”时期是中国实现碳达峰的关键时期,也是推动经济高质量发展和生态环境质量持续改善的重要阶段。可拓展的随机性环境影响评估(Stochastic Impacts by Regression on Population,Affluence,and Technology,STIRPAT)模型可以根据研究需要增加自变量,更好地分析相关因素对因变量的影响。以北京市为研究区,通过构建扩展的STIRPAT模型,分析人均地区生产总值(Gross Domestic Product,GDP)、人均汽车保有量、城市化率、第三产业GDP占比、能源消费强度与人均碳排放量的关系,并采用对数平均迪氏指数(Logarithmic Mean Divisia Index,LMDI)分解法分解能源消费强度。结果表明,产业结构和能源消费强度对人均碳排放量均有显著的正向影响。总体来看,要平衡经济发展与碳排放的关系,提高能源利用效率,推广可再生能源,降低能源消耗,减少碳排放。
基金Under the auspices of National Natural Science Foundation of China(No.41301633)National Social Science Foundation of China(No.10ZD&030)+1 种基金Postdoctoral Science Foundation of China(No.2012M511243,2013T60518)Clean Development Mechanism Foundation of China(No.1214073,2012065)
文摘Through the matching relationship between land use types and carbon emission items, this paper estimated carbon emissions of different land use types in Nanjing City, China and analyzed the influencing factors of carbon emissions by Logarithmic Mean Divisia Index(LMDI) model. The main conclusions are as follows: 1) Total anthropogenic carbon emission of Nanjing increased from 1.22928 ×10^7 t in 2000 to 3.06939 × 10^7 t in 2009, in which the carbon emission of Inhabitation, mining & manufacturing land accounted for 93% of the total. 2) The average land use carbon emission intensity of Nanjing in 2009 was 46.63 t/ha, in which carbon emission intensity of Inhabitation, mining & manufacturing land was the highest(200.52 t/ha), which was much higher than that of other land use types. 3) The average carbon source intensity in Nanjing was 16 times of the average carbon sink intensity(2.83 t/ha) in 2009, indicating that Nanjing was confronted with serious carbon deficit and huge carbon cycle pressure. 4) Land use area per unit GDP was an inhibitory factor for the increase of carbon emissions, while the other factors were all contributing factors. 5) Carbon emission effect evaluation should be introduced into land use activities to formulate low-carbon land use strategies in regional development.
文摘在“双碳”目标的背景下,作为全社会碳排放最主要的排放源,能源活动的碳减排尤为关键。为明确电力系统碳排放量、能源消费强度、产业结构等因素对能源系统碳排放的影响作用及贡献程度,基于灰色GM(1,1)模型对我国的能源消费总量进行预测,并进行模型检验以保证可行性。根据联合国政府间气候变化专门委员会(intergovernmental panel on climate change,IPCC)碳排放系数法,根据我国能源平衡表的数据对2015—2019年各行业碳排放量进行测算。在此基础上,利用对数平均迪氏指数法(logarithmic mean Divisia index,LMDI)构建碳排放分析模型,对结果标准化处理后分析各效应对能源系统碳排放量的影响程度。计算结果表明能源消费强度、人口数量、城镇化水平及电力碳排放量会促进能源系统碳排放增长,而能源消费强度、农村人口比重及产业结构起到了抑制作用。