This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the correspon...This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).展开更多
Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)an...Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)and the functional LIL for a linear additive functional of the form∫[0,R]u(t,x)dx and the nonlinear additive functionals of the form∫[0,R]g(u(t,x))dx,where g:R→R is nonrandom and Lipschitz continuous,as R→∞for fixed t>0,using the localization argument.展开更多
We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a ...We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a positive constant.By using a variational method and the critical point theory for a nonsmooth functional,we obtain the existence of two positive solutions.This result generalizes and improves upon recent results in the literature.展开更多
In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity an...In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).展开更多
Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 t...Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.展开更多
Series of exponential equations in the form of were solved graphically, numerically and analytically. The analytical solution was derived in terms of Lambert-W function. A general numerical solution for any y is found...Series of exponential equations in the form of were solved graphically, numerically and analytically. The analytical solution was derived in terms of Lambert-W function. A general numerical solution for any y is found in terms of n or in base y. A solution is close to the fine structure constant. The equation which provided the solution as the fine structure constant was derived in terms of the fundamental constants.展开更多
This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a ser...This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.展开更多
In this paper, the existence and uniqueness of solution of singular Hammerstein-Volterra integral equation (<strong>H-VIE</strong>) are considered. Toeplitz matrix (<strong>TMM</strong>) and pr...In this paper, the existence and uniqueness of solution of singular Hammerstein-Volterra integral equation (<strong>H-VIE</strong>) are considered. Toeplitz matrix (<strong>TMM</strong>) and product Nystrom method (<strong>PNM</strong>) to solve the <strong>H-VIE</strong> with singular logarithmic kernel are used. The absolute error is calculated.展开更多
In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM...In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM) was studied. This technique is a convergent series from easily computable components. Four examples are exhibited, when the kernel takes Carleman and logarithmic forms. Numerical results uncover that the method is efficient and high accurate.展开更多
In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the...In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the above problem admits at least one ground state solution and one ground state sign-changing solution.Moreover,by using variational methods,we prove that how the coefficient function of the critical nonlinearity affects the number of positive solutions.The main feature which distinguishes this paper from other related works lies in the fact that it is the first attempt to study the existence and multiplicity for the above problem involving both logarithmic and critical nonlinearities.展开更多
We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy ...We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.展开更多
We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Lapla...We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Laplace equation in the plane.The optimal convergence order and quasi-linear complexity order of the proposed method are established.A precondition is introduced.Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc,we obtain the solution of the Dirichlet problem on a smooth open arc in the plane.Numerical examples are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.展开更多
In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space B ∞,∞ -r (R2). The result shows that if 0 is a weak solutions satisfies ...In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space B ∞,∞ -r (R2). The result shows that if 0 is a weak solutions satisfies ∫ 0 T || θ (·,s)||a/a-r B ∞,∞ -r /(1+ln(e+|| ⊥(·,s)|| L r2) ds〈∞ for some 0〈r〈a and 0〈a〈1,then θ is regular at t = T. In view of the embedding L 2/r M p 2/r B ∞,∞ -r with 2≤p〈2/r and 0≤r〈1, we see that our result extends the results due to [20] and [31].展开更多
In this paper we consider the initial boundary value problem for a class of logarithmic wave equation. By constructing an appropriate Lyapunov function, we obtain the decay estimates of energy for the logarithmic wave...In this paper we consider the initial boundary value problem for a class of logarithmic wave equation. By constructing an appropriate Lyapunov function, we obtain the decay estimates of energy for the logarithmic wave equation with linear damping and some suitable initial data. The results extend the early results.展开更多
We consider the two-dimensional Cahn-Hilliard equation with logarithmic potentials and periodic boundary conditions.We employ the standard semi-implicit numerical scheme,which treats the linear fourth-order dissipatio...We consider the two-dimensional Cahn-Hilliard equation with logarithmic potentials and periodic boundary conditions.We employ the standard semi-implicit numerical scheme,which treats the linear fourth-order dissipation term implicitly and the nonlinear term explicitly.Under natural constraints on the time step we prove strict phase separation and energy stability of the semiimplicit scheme.This appears to be the first rigorous result for the semi-implicit discretization of the Cahn-Hilliard equation with singular potentials.展开更多
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘This paper is devoted to studying the existence of solutions for the following logarithmic Schrödinger problem: −div(a(x)∇u)+V(x)u=ulogu2+k(x)| u |q1−2u+h(x)| u |q2−2u, x∈ℝN.(1)We first prove that the corresponding functional I belongs to C1(HV1(ℝN),ℝ). Furthermore, by using the variational method, we prove the existence of a sigh-changing solution to problem (1).
基金supported by the National Natural Science Foundation of China(11771178 and 12171198)the Science and Technology Development Program of Jilin Province(20210101467JC)+1 种基金the Science and Technology Program of Jilin Educational Department during the“13th Five-Year”Plan Period(JJKH20200951KJ)the Fundamental Research Funds for the Central Universities。
文摘Let u(t,x)be the solution to the one-dimensional nonlinear stochastic heat equation driven by space-time white noise with u(0,x)=1 for all x∈R.In this paper,we prove the law of the iterated logarithm(LIL for short)and the functional LIL for a linear additive functional of the form∫[0,R]u(t,x)dx and the nonlinear additive functionals of the form∫[0,R]g(u(t,x))dx,where g:R→R is nonrandom and Lipschitz continuous,as R→∞for fixed t>0,using the localization argument.
基金supported by Natural Science Foundation of Guizhou Minzu University(20185773-YB03)supported by Fundamental Research Funds of China West Normal University(18B015)+2 种基金Innovative Research Team of China West Normal University(CXTD2018-8)supported by National Natural Science Foundation of China(11861021)supported by National Natural Science Foundation of China(11661021)。
文摘We consider the logarithmic elliptic equation with singular nonlinearity {Δu+ulogu^(2)+λ/u^(γ)=0,in Ω,u>0,in Ω,u=0,on δΩ,where Ω⊂R^(N)(N≥3)is a bounded domain with a smooth boundary,0<γ<1 andλis a positive constant.By using a variational method and the critical point theory for a nonsmooth functional,we obtain the existence of two positive solutions.This result generalizes and improves upon recent results in the literature.
文摘In this work we suggestion new methods investigation the model Volterra type integral equation with logarithmic singularity, kernel which consisting from composition polynomial function with logarithmic singularity and function with singular point. The problem investigation this type integral equation at n = 2m reduce to problem investigate the Volterra type integral equation (1) for n = 2 the theory for which was constructed in [2]. In this work, we investigation integral equation (1) at = 2m + 1 In this case, we investigate integral equation (1) reduction it's to m integral equation type [2] φ(x)+∫xa[p1+p2 ln(x-a/t-a)]φ(t)/t-a dt=f(x)and one the following integral equation [1] ω(x)+p3∫xω(t)/ a t-adt=g(x).
基金supported by Natural Science Foundation of China (10971199)Natural Science Foundations of Henan Province (092300410067)
文摘Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.
文摘Series of exponential equations in the form of were solved graphically, numerically and analytically. The analytical solution was derived in terms of Lambert-W function. A general numerical solution for any y is found in terms of n or in base y. A solution is close to the fine structure constant. The equation which provided the solution as the fine structure constant was derived in terms of the fundamental constants.
基金Supported by the Project of Education Department of Hunan Province (20A174)。
文摘This paper is mainly focused on the global existence and extinction behaviour of the solutions to a doubly nonlinear parabolic equation with logarithmic nonlinearity. By making use of energy estimates method and a series of ordinary differential inequalities, the global existence of the solution is obtained. Moreover, we give the sufficient conditions on the occurrence(or absence)of the extinction behaviour.
文摘In this paper, the existence and uniqueness of solution of singular Hammerstein-Volterra integral equation (<strong>H-VIE</strong>) are considered. Toeplitz matrix (<strong>TMM</strong>) and product Nystrom method (<strong>PNM</strong>) to solve the <strong>H-VIE</strong> with singular logarithmic kernel are used. The absolute error is calculated.
文摘In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM) was studied. This technique is a convergent series from easily computable components. Four examples are exhibited, when the kernel takes Carleman and logarithmic forms. Numerical results uncover that the method is efficient and high accurate.
基金The first author is supported by the National Natural Science Foundation of China(Grant No.12101599)the China Postdoctoral Science Foundation(Grant No.2021M703506)+2 种基金the second author is supported by National Natural Science Foundation of China(Grant Nos.11871199 and 12171152)Shandong Provincial Natural Science Foundation,P.R.China(Grant No.ZR2020MA006)Cultivation Project of Young and Innovative Talents in Universities of Shandong Province。
文摘In this paper,we study a class of the fractional Schrodinger equations involving logarithmic and critical nonlinearities.By using the Nehari manifold method and the concentration compactness principle,we show that the above problem admits at least one ground state solution and one ground state sign-changing solution.Moreover,by using variational methods,we prove that how the coefficient function of the critical nonlinearity affects the number of positive solutions.The main feature which distinguishes this paper from other related works lies in the fact that it is the first attempt to study the existence and multiplicity for the above problem involving both logarithmic and critical nonlinearities.
基金supported by the National Natural Science Foundation of China(12271523,11901577,11971481,12071481)the National Key R&D Program of China(SQ2020YFA0709803)+5 种基金the Defense Science Foundation of China(2021-JCJQ-JJ-0538)the National Key Project(GJXM92579)the Natural Science Foundation of Hunan(2020JJ5652,2021JJ20053)the Research Fund of National University of Defense Technology(ZK19-37,ZZKY-JJ-21-01)the Science and Technology Innovation Program of Hunan Province(2021RC3082)the Research Fund of College of Science,National University of Defense Technology(2023-lxy-fhjj-002).
文摘We develop a class of conservative integrators for the regularized logarithmic Schrodinger equation(RLogSE)using the quadratization technique and symplectic Runge-Kutta schemes.To preserve the highly nonlinear energy functional,the regularized equation is first transformed into an equivalent system that admits two quadratic invariants by adopting the invariant energy quadratization approach.The reformulation is then discretized using the Fourier pseudo-spectral method in the space direction,and integrated in the time direction by a class of diagonally implicit Runge-Kutta schemes that conserve both quadratic invariants to round-off errors.For comparison purposes,a class of multi-symplectic integrators are developed for RLogSE to conserve the multi-symplectic conservation law and global mass conservation law in the discrete level.Numerical experiments illustrate the convergence,efficiency,and conservative properties of the proposed methods.
基金supported by the President Fund of GUCAS and the US National Science Foundation (Grant No.CCR-0407476,DMS-0712827)National Natural Science Foundation of China(Grant No.10371122,10631080)
文摘We propose a fully discrete fast Fourier-Galerkin method for solving an integral equation of the first kind with a logarithmic kernel on a smooth open arc,which is a reformulation of the Dirichlet problem of the Laplace equation in the plane.The optimal convergence order and quasi-linear complexity order of the proposed method are established.A precondition is introduced.Combining this method with an efficient numerical integration algorithm for computing the single-layer potential defined on an open arc,we obtain the solution of the Dirichlet problem on a smooth open arc in the plane.Numerical examples are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.
文摘In this paper, we consider the logarithmically improved regularity criterion for the supercritical quasi-geostrophic equation in Besov space B ∞,∞ -r (R2). The result shows that if 0 is a weak solutions satisfies ∫ 0 T || θ (·,s)||a/a-r B ∞,∞ -r /(1+ln(e+|| ⊥(·,s)|| L r2) ds〈∞ for some 0〈r〈a and 0〈a〈1,then θ is regular at t = T. In view of the embedding L 2/r M p 2/r B ∞,∞ -r with 2≤p〈2/r and 0≤r〈1, we see that our result extends the results due to [20] and [31].
文摘In this paper we consider the initial boundary value problem for a class of logarithmic wave equation. By constructing an appropriate Lyapunov function, we obtain the decay estimates of energy for the logarithmic wave equation with linear damping and some suitable initial data. The results extend the early results.
基金supported in part by Hong Kong RGC grant GRF Nos.16307317,16309518partially supported by the NSFC grants Nos.11731006,K20911001,NSFC/RGC No.11961160718the Science Challenge Project(No.TZ2018001)。
文摘We consider the two-dimensional Cahn-Hilliard equation with logarithmic potentials and periodic boundary conditions.We employ the standard semi-implicit numerical scheme,which treats the linear fourth-order dissipation term implicitly and the nonlinear term explicitly.Under natural constraints on the time step we prove strict phase separation and energy stability of the semiimplicit scheme.This appears to be the first rigorous result for the semi-implicit discretization of the Cahn-Hilliard equation with singular potentials.