In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then th...In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then the singular ODE occurring in classic Levin methods is converted into two kinds of non-singular ODEs.The solutions of one can be obtained explicitly,while the other kind of ODEs can be solved efficiently by collocation methods.The proposed methods can attain arbitrarily high asymptotic orders and also enjoy superalgebraic convergence with respect to the number of collocation points.Several numerical experiments are presented to validate the efficiency of the proposed methods.展开更多
We address the evaluation of highly oscillatory integrals,with power-law and logarithmic singularities.Such problems arise in numerical methods in engineering.Notably,the evaluation of oscillatory integrals dominates ...We address the evaluation of highly oscillatory integrals,with power-law and logarithmic singularities.Such problems arise in numerical methods in engineering.Notably,the evaluation of oscillatory integrals dominates the run-time for wave-enriched boundary integral formulations for wave scattering,and many of these exhibit singularities.We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand,the stationary points and the endpoints of the integral.A truncated asymptotic expansion achieves an error that decays faster for increasing frequency.Based on the asymptotic analysis,a Filon-type method is constructed to approximate the integral.Unlike an asymptotic expansion,the Filon method achieves high accuracy for both small and large frequency.Complex-valued quadrature involves interpolation at the zeros of polynomials orthogonal to a complex weight function.Numerical results indicate that the complex-valued Gaussian quadrature achieves the highest accuracy when the three methods are compared.However,while it achieves higher accuracy for the same number of function evaluations,it requires signi cant additional cost of computation of orthogonal polynomials and their zeros.展开更多
The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field ...The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11771454)Research Fund of National University of Defense Technology(Grant No.ZK19-19)。
文摘In this paper,new Levin methods are presented for calculating oscillatory integrals with algebraic and/or logarithmic singularities.To avoid singularities,the technique of singularity separation is applied and then the singular ODE occurring in classic Levin methods is converted into two kinds of non-singular ODEs.The solutions of one can be obtained explicitly,while the other kind of ODEs can be solved efficiently by collocation methods.The proposed methods can attain arbitrarily high asymptotic orders and also enjoy superalgebraic convergence with respect to the number of collocation points.Several numerical experiments are presented to validate the efficiency of the proposed methods.
基金The work is supported by Royal Society International Exchanges(grant IE141214)the Projects of International Cooperation and Exchanges NSFC-RS(Grant No.11511130052)+1 种基金the Key Science and Technology Program of Shaanxi Province of China(Grant No.2016GY-080)the Fundamental Research Funds for the Central Universities.
文摘We address the evaluation of highly oscillatory integrals,with power-law and logarithmic singularities.Such problems arise in numerical methods in engineering.Notably,the evaluation of oscillatory integrals dominates the run-time for wave-enriched boundary integral formulations for wave scattering,and many of these exhibit singularities.We show that the asymptotic behaviour of the integral depends on the integrand and its derivatives at the singular point of the integrand,the stationary points and the endpoints of the integral.A truncated asymptotic expansion achieves an error that decays faster for increasing frequency.Based on the asymptotic analysis,a Filon-type method is constructed to approximate the integral.Unlike an asymptotic expansion,the Filon method achieves high accuracy for both small and large frequency.Complex-valued quadrature involves interpolation at the zeros of polynomials orthogonal to a complex weight function.Numerical results indicate that the complex-valued Gaussian quadrature achieves the highest accuracy when the three methods are compared.However,while it achieves higher accuracy for the same number of function evaluations,it requires signi cant additional cost of computation of orthogonal polynomials and their zeros.
基金supported by the National Natural Science Foundation of China (Grant No. 50879090)
文摘The singularities, oscillatory performances and the contributing factors to the 3-'D translating-pulsating source Green function of deep-water Havelock form which consists of a local disturbance part and a far-field wave-like part, are analyzed systematically. Relative numerical integral methods about the two parts are presented in this paper. An improved method based on LOBATTO rule is used to eliminate singularities caused respectively by infinite discontinuity and jump discontinuous node from the local disturbance part function, which makes the improvement of calculation efficiency and accuracy possible. And variable substitution is applied to remove the singularity existing at the end of the integral interval of the far-field wave-like part function. Two auxiliary techniques such as valid interval calculation and local refinement of integral steps technique in narrow zones near false singularities are applied so as to avoid unnecessary integration of invalid interval and improve integral accordance. Numerical test results have proved the efficiency and accuracy in these integral methods that thus can be applied to calculate hydrodynamic performance of floating structures moving in waves.