Information about anisotropic resistivity is essential in real-time correlation,updating of formation model and making more confi dent geosteering decisions in logging-while-drilling(LWD)application.However,abnormal r...Information about anisotropic resistivity is essential in real-time correlation,updating of formation model and making more confi dent geosteering decisions in logging-while-drilling(LWD)application.However,abnormal responses such as curve separations and apparent resistivity“horns”often exist in the LWD resistivity measurements due to the infl uences of complex downhole environments.Thus,accurate formation resistivity is not readily available.In this paper,we present an effi cient inversion scheme for the rapid estimation of anisotropic resistivity from LWD resistivity measurements acquired in high-angle and horizontal wells.Several strategies are adopted in the inversion:(1)a one-dimensional(1D)simulator with a simplifi ed three-layered model guarantees the forward speed and keeps the number of inverted parameters as few as possible;(2)combined with geological and petrophysical bounds,the tool constraints derived from a detection capability analysis of LWD resistivity measurements are applied to scale down the inverted parameters’searching scope,which avoids meaningless solutions and accelerates the inversion signifi cantly;(3)multiple-initial guesses are used in the inversion to ensure a global solution.Inversion results over synthetic examples demonstrate that the proposed 1D inversion algorithm is well suited for complex formation structures.It is also robust and fast in extracting anisotropic resistivities from LWD resistivity measurements.展开更多
In recent years more and more multi-array logging tools, such as the array induction and the array lateralog, are applied in place of conventional logging tools resulting in increased resolution, better radial and ver...In recent years more and more multi-array logging tools, such as the array induction and the array lateralog, are applied in place of conventional logging tools resulting in increased resolution, better radial and vertical sounding capability and other features. Multi-array logging tools acquire several times more individual measurements than conventional logging tools. In addition to new information contained in these data, there is a certain redundancy among the measurements. The sum of the measurements actually composes a large matrix. Providing the measurements are error-free, the elements of this matrix show certain consistencies. Taking advantage of these consistencies, an innovative method is developed to detect and correct errors in the array resistivity logging tool raw measurements, and evaluate the quality of the data. The method can be described in several steps. First, data consistency patterns are identified based on the physics of the measurements. Second, the measurements are compared against the consistency patterns for error and bad data detection. Third, the erroneous data are eliminated and the measurements are re-constructed according to the consistency patterns. Finally, the data quality is evaluated by comparing the raw measurements with the re-constructed measurements. The method can be applied to all array type logging tools, such as array induction tool and array resistivity tool. This paper describes the method and illustrates its application with the High Definition Lateral Log (HDLL, Baker Atlas) instrument. To demonstrate the efficiency of the method, several field examples are shown and discussed.展开更多
The numerical solution of Green’s function for the potential in 2-D arbitrary in-homogeneous media with axial symmetry has been given by use of efficient half-analytical, half-numerical hybrid method. Then the loggin...The numerical solution of Green’s function for the potential in 2-D arbitrary in-homogeneous media with axial symmetry has been given by use of efficient half-analytical, half-numerical hybrid method. Then the logging responses of various kinds of the DC resistivity log with axisymmetric excitation have been obtained by using surface integral equation method to match the boundary conditions on the electrodes of the logging sonde. Comparing the results with that obtained by other methods, one can see good precision and efficiency of the given method. Some applications of the numerical modeling have been also discussed.展开更多
In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inv...In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.展开更多
The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with tr...The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with traditional logging interpretation methods.This study classifies the reservoirs on the basis of core analysis and establishes an identification model for watered-out layers in the field to effectively improve the interpretation accuracy.Thin section analysis shows that there are three types of pores in the reservoirs,i.e.,the matrix pore,fracture and dissolution vug.A triple porosity model is used to calculate the porosities of the reservoirs and the results are combined with core analysis to classify the reservoirs into the fractured,matrix pore,fracture-pore as well as composite types.A classification standard is also proposed.There are differences in resistivity logging responses from the reservoirs of different types before and after watering-out.The preewatering-out resistivities are reconstructed using generalized neural network for different types of reservoirs.The watered-out layers can be effectively identified according to the difference in resistivity curves before and after watering-out.The results show that the watered-out layers identified with the method are consistent with measured data,thus serving as a reference for the evaluation of watered-out layers in the study area.展开更多
The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambr...The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.展开更多
This paper presents an overview of petrophysical research and exploration achievements of low resistivity pay (LRP) zone by well logs in China. It includes geological characteristics and characteristics of well log ...This paper presents an overview of petrophysical research and exploration achievements of low resistivity pay (LRP) zone by well logs in China. It includes geological characteristics and characteristics of well log response of the low resistivity pay zones discovered and evaluated in recent years, as well as the problems in recognizing and evaluating low resistivity pay zones by well logs. The research areas mainly include the Neogene formations in the Bohai Bay Basin, the Triassic formations in the northern Tarim Basin and the Cretaceous formations in the Junggar Basin, The petrophysical research concerning recognition and evaluation of the low resistivity pays, based on their genetic types, is introduced in this paper.展开更多
A scaling-down experiment system of array laterolog resistivity was developed, and a corresponding formation model was built by 3 D finite element numerical method to study the effect of different factors on the loggi...A scaling-down experiment system of array laterolog resistivity was developed, and a corresponding formation model was built by 3 D finite element numerical method to study the effect of different factors on the logging response quantitatively. The error between the experimental and numerical results was less than 5%, validating the reliability of the numerical simulation method. The single factor analysis of the formation relative dip, resistivity anisotropy and drilling fluid invasion was carried out by numerical simulation method, and the results show that:(1) The increase of relative dip can lead to the increase of formation resistivity, but the increasing value is relatively small, and the values of five array resistivity curves will reverse when the relative dip angle reaches a certain degree.(2) The increase of anisotropy coefficient λ can also cause the formation resistivity to rise, and the resistivity will increase by about 10% when λ increases from 1.0 to 1.5 in vertical wells.(3) Drilling fluid invasion has a more significant effect on the logging response than the former two factors. The order of the five curves will change due to drilling fluid invasion in anisotropic formation and the change rule is contrary to resistivity anisotropy. Taking the logging data of the Yingxi oilfield in the Qaidam Basin as an example, an anisotropic formation model considering drilling fluid invasion was built, and the numerical simulation results from the above methods were basically consistent with the logging data, which verified the accuracy of the method again. The results of this study lay a theoretical foundation for multiple-parameter inversion in anisotropic formation under complex well conditions.展开更多
Accurate laboratory measurements and analysis of electrical properties of core samples are a prerequisite step to the evaluation of oil and gas reserves. In recent times, this evaluation technique has been adopted in ...Accurate laboratory measurements and analysis of electrical properties of core samples are a prerequisite step to the evaluation of oil and gas reserves. In recent times, this evaluation technique has been adopted in carbon dioxide sequestration projects for estimating and monitoring carbon dioxide (CO2) accumulation in saline aquifers. Several papers have reported laboratory success in the use of resistivity measurements to monitor the flow and also estimate the volume of CO2 plume in geological formations. Such laboratory experiments did not capture the effect of CO2 -brine-rock interaction (CBRI) on saturation estimation. The possibility of a change in value resistivity due to CO2/brine/rock interactions, and the possible effect on CO2 monitoring and estimation are of immediate interest here. Preliminary results of an ongoing research work showed that a much longer experiment time accommodates CO2-brine-rock interaction which ultimately lead to change in rock resistivity. We hereby present the electrical behavior of carbonates to CO2/ brine/rock interaction during prolonged CO2 sequestration and the effect on saturation estimation. This electrical behavior and its possible effect on CO2 monitoring and estimation are discussed.展开更多
The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reserv...The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.展开更多
Nuclear magnetic resonance logging (NMR) is an open well logging method. Drilling mud resistivity, formation resistivity and sodium ions influence its radio frequency (RF) field strength and NMR logging signals. R...Nuclear magnetic resonance logging (NMR) is an open well logging method. Drilling mud resistivity, formation resistivity and sodium ions influence its radio frequency (RF) field strength and NMR logging signals. Research on these effects can provide an important basis for NMR logging data acquisition and interpretation. Three models, water-based drilling mud--water bearing formation, water- based drilling mud--oil bearing formation, oil-based drilling mud--water bearing formation, were studied by finite element method numerical simulation. The influences of drilling mud resistivity and formation resistivity on the NMR logging tool RF field and the influences of sodium ions on the NMR logging signals were simulated numerically. On the basis of analysis, RF field correction and sodium ion correction formulae were proposed and their application range was also discussed. The results indicate that when drilling mud resistivity and formation resistivity are 0.02 Ω·m and 0.2 Ω·m respectively, the attenuation index of centric NMR logging tool is 8.9% and 9.47% respectively. The RF field of an eccentric NMR logging tool is affected mainly by formation resistivity. When formation resistivity is 0.1 Ω·m, the attenuation index is 17.5%. For centric NMR logging tools, the signals coming from sodium ions can be up to 31.8% of total signal. Suggestions are proposed for further research into NMR logging tool correction method and response characteristics.展开更多
The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured dir...The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured directly.These vitrinite reflectance values,when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells,display a rarely reported finding that deep resistivity readings decrease as R_o increases when R_o is greater than 0.90%.This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds.And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak.The finding of the relationship between deep resistivity and R_o may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.展开更多
A novel,highly efficient and accurate adaptive higher-order finite element method(hp-FEM)is used to simulate a multi-frequency resistivity loggingwhile-drilling(LWD)tool response in a borehole environment.Presented in...A novel,highly efficient and accurate adaptive higher-order finite element method(hp-FEM)is used to simulate a multi-frequency resistivity loggingwhile-drilling(LWD)tool response in a borehole environment.Presented in this study are the vector expression of Maxwell’s equations,three kinds of boundary conditions,stability weak formulation of Maxwell’s equations,and automatic hpadaptivity strategy.The new hp-FEM can select optimal refinement and calculation strategies based on the practical formation model and error estimation.Numerical experiments show that the new hp-FEM has an exponential convergence rate in terms of relative error in a user-prescribed quantity of interest against the degrees of freedom,which provides more accurate results than those obtained using the adaptive h-FEM.The numerical results illustrate the high efficiency and accuracy of the method at a given LWD tool structure and parameters in different physical models,which further confirm the accuracy of the results using the Hermes library(http://hpfem.org/hermes)with a multi-frequency resistivity LWD tool response in a borehole environment.展开更多
The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed...The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of a distributary channel and the top of a distributary mouth bar. Lower resistivity shale (4-5 Ω · m) and higher resistivity shale (〉 10Ω·m) reflect differences in sediment fountain or sediment microfacies. Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-resolution chronostratigraphic frame- work of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.展开更多
The Numerical Mode-Matching(NMM) method is far more efficient than the integral equation method and the finite element method, but it could not be applied to problems such as low frequency electrode-type resistivity t...The Numerical Mode-Matching(NMM) method is far more efficient than the integral equation method and the finite element method, but it could not be applied to problems such as low frequency electrode-type resistivity tool with different electrode radii. In this paper, this problem is dealt with using an approximate NMM method, and the simulation of hybrid laterolog-3 tool gives very good results and the computer time is only 1% more than the traditional NMM. It is an extension of the application of NMM method.展开更多
An invasive electrical resistance tomographic sensor was proposed for production logging in vertical oil well.The sensor consists of 24 electrodes that are fixed to the logging tool,which can move in the pipeline to a...An invasive electrical resistance tomographic sensor was proposed for production logging in vertical oil well.The sensor consists of 24 electrodes that are fixed to the logging tool,which can move in the pipeline to acquire data on the conductivity distribution of oil/water mixture flow at different depths.A sensitivity-based algorithm was introduced to reconstruct the cross-sectional images.Analysis on the sensitivity of the sensor to the distribution of oil/water mixture flow was carried out to optimize the position of the imaging cross-section.The imaging results obtained using various boundary conditions at the pipe wall and the logging tool were compared.Eight typical models with various conductivity distributions were created and the measurement data were obtained by solving the forward problem of the sensor system.Image reconstruction was then implemented by using the simulation data for each model.Comparisons between the models and the reconstructed images show that the number and spatial distribution of the oil bubbles can be clearly identified.展开更多
Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation ...Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation interpretation models is equivalent to considering only the simple case that hydrate exists as pore filling,and does not consider other complex states.Based on the analysis of hydrate resistivity experimental data and the general form of the resistivity-oil(gas)saturation relationship,the best simplified formula of hydrate saturation calculation is derived,then the physical meaning of the three items are clarified:they respectively represent the resistivity index-saturation relationship when hydrate particles are completely distributed in the pores of formation rocks,supported in the form of particles,and exist in layers,corresponding quantitative evaluation method of hydrate saturation is built.The field application shows that the hydrate saturation calculated by this method is closer to that obtained by sampling analysis.At the same time,it also provides a logging analysis basis for the effective development after hydrate exploration.展开更多
In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. B...In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.41904109,No.41974146,and No.42074134),China Postdoctoral Science Foundation(No.2018M640663),the Shandong Province Postdoctoral Innovation Projects(No.sdbh20180025),State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Eff ective Development Projects(No.20-YYGZ-KF-GC-11),and National key Laboratory of Electromagnetic Environment Projects(No.6142403200307).We also wish to thank peer reviewer,Hu Song and Wang Zhicai for their comments and suggestions.
文摘Information about anisotropic resistivity is essential in real-time correlation,updating of formation model and making more confi dent geosteering decisions in logging-while-drilling(LWD)application.However,abnormal responses such as curve separations and apparent resistivity“horns”often exist in the LWD resistivity measurements due to the infl uences of complex downhole environments.Thus,accurate formation resistivity is not readily available.In this paper,we present an effi cient inversion scheme for the rapid estimation of anisotropic resistivity from LWD resistivity measurements acquired in high-angle and horizontal wells.Several strategies are adopted in the inversion:(1)a one-dimensional(1D)simulator with a simplifi ed three-layered model guarantees the forward speed and keeps the number of inverted parameters as few as possible;(2)combined with geological and petrophysical bounds,the tool constraints derived from a detection capability analysis of LWD resistivity measurements are applied to scale down the inverted parameters’searching scope,which avoids meaningless solutions and accelerates the inversion signifi cantly;(3)multiple-initial guesses are used in the inversion to ensure a global solution.Inversion results over synthetic examples demonstrate that the proposed 1D inversion algorithm is well suited for complex formation structures.It is also robust and fast in extracting anisotropic resistivities from LWD resistivity measurements.
基金The authors would like to thank Dr. Jiaqi Xiao in Halliburton for his assistance and discussions.
文摘In recent years more and more multi-array logging tools, such as the array induction and the array lateralog, are applied in place of conventional logging tools resulting in increased resolution, better radial and vertical sounding capability and other features. Multi-array logging tools acquire several times more individual measurements than conventional logging tools. In addition to new information contained in these data, there is a certain redundancy among the measurements. The sum of the measurements actually composes a large matrix. Providing the measurements are error-free, the elements of this matrix show certain consistencies. Taking advantage of these consistencies, an innovative method is developed to detect and correct errors in the array resistivity logging tool raw measurements, and evaluate the quality of the data. The method can be described in several steps. First, data consistency patterns are identified based on the physics of the measurements. Second, the measurements are compared against the consistency patterns for error and bad data detection. Third, the erroneous data are eliminated and the measurements are re-constructed according to the consistency patterns. Finally, the data quality is evaluated by comparing the raw measurements with the re-constructed measurements. The method can be applied to all array type logging tools, such as array induction tool and array resistivity tool. This paper describes the method and illustrates its application with the High Definition Lateral Log (HDLL, Baker Atlas) instrument. To demonstrate the efficiency of the method, several field examples are shown and discussed.
基金Supported by the National Natural Science FoundatiOn of China
文摘The numerical solution of Green’s function for the potential in 2-D arbitrary in-homogeneous media with axial symmetry has been given by use of efficient half-analytical, half-numerical hybrid method. Then the logging responses of various kinds of the DC resistivity log with axisymmetric excitation have been obtained by using surface integral equation method to match the boundary conditions on the electrodes of the logging sonde. Comparing the results with that obtained by other methods, one can see good precision and efficiency of the given method. Some applications of the numerical modeling have been also discussed.
基金funded by the National Natural Science Foundation (41174009)National Major Science &Technology Projects (2011ZX05020, 2011ZX05035,2011ZX05003, 2011ZX05007)
文摘In order to improve reservoir fluid recognition, the sensitivity of array resistivity response to the difference of the invasion properties in both oil-bearing layers and water layers is analyzed. Then the primary inversion is carried out based on the array resistivity log. The mud invasion process is numerically simulated based on the oil-water flow equation and water convection diffusion equation. The results show that the radial resistivity of a fresh mud-invaded oil-bearing layer presents complex distribution characteristics, such as nonlinear increase, increasing to decreasing and low resistivity annulus, and the resistive invasion profile of a water layer is monotonic. Under specific conditions, array resistivity log can reflect these changes and the array induction log is more sensitive. Nevertheless, due to the effect of factors like large invasion depth, reservoir physical and oil-bearing properties, the measured apparent resistivity may differ greatly from the actual mud filtrate invasion profile in an oil-bearing layer. We proposed a five-parameter formation model to simulate the complex resistivity distribution of fresh mud-invaded formation. Then, based on the principle of non-linear least squares, the measured array resistivity log is used for inversion with the Marquardt method. It is demonstrated that the inverted resistivity is typically non-monotonic in oil-bearing layers and is monotonic in water layers. Processing of some field data shows that this is helpful in achieving efficient reservoir fluid recognition.
文摘The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with traditional logging interpretation methods.This study classifies the reservoirs on the basis of core analysis and establishes an identification model for watered-out layers in the field to effectively improve the interpretation accuracy.Thin section analysis shows that there are three types of pores in the reservoirs,i.e.,the matrix pore,fracture and dissolution vug.A triple porosity model is used to calculate the porosities of the reservoirs and the results are combined with core analysis to classify the reservoirs into the fractured,matrix pore,fracture-pore as well as composite types.A classification standard is also proposed.There are differences in resistivity logging responses from the reservoirs of different types before and after watering-out.The preewatering-out resistivities are reconstructed using generalized neural network for different types of reservoirs.The watered-out layers can be effectively identified according to the difference in resistivity curves before and after watering-out.The results show that the watered-out layers identified with the method are consistent with measured data,thus serving as a reference for the evaluation of watered-out layers in the study area.
文摘The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.
基金Supported by CNPC Innovation Foundation,Research Projects of PetroChina,Xinjiang and Tarim Oil Companies
文摘This paper presents an overview of petrophysical research and exploration achievements of low resistivity pay (LRP) zone by well logs in China. It includes geological characteristics and characteristics of well log response of the low resistivity pay zones discovered and evaluated in recent years, as well as the problems in recognizing and evaluating low resistivity pay zones by well logs. The research areas mainly include the Neogene formations in the Bohai Bay Basin, the Triassic formations in the northern Tarim Basin and the Cretaceous formations in the Junggar Basin, The petrophysical research concerning recognition and evaluation of the low resistivity pays, based on their genetic types, is introduced in this paper.
基金Supported by the Scientific Research and Technological Development Project of CNPC(2019A-3608).
文摘A scaling-down experiment system of array laterolog resistivity was developed, and a corresponding formation model was built by 3 D finite element numerical method to study the effect of different factors on the logging response quantitatively. The error between the experimental and numerical results was less than 5%, validating the reliability of the numerical simulation method. The single factor analysis of the formation relative dip, resistivity anisotropy and drilling fluid invasion was carried out by numerical simulation method, and the results show that:(1) The increase of relative dip can lead to the increase of formation resistivity, but the increasing value is relatively small, and the values of five array resistivity curves will reverse when the relative dip angle reaches a certain degree.(2) The increase of anisotropy coefficient λ can also cause the formation resistivity to rise, and the resistivity will increase by about 10% when λ increases from 1.0 to 1.5 in vertical wells.(3) Drilling fluid invasion has a more significant effect on the logging response than the former two factors. The order of the five curves will change due to drilling fluid invasion in anisotropic formation and the change rule is contrary to resistivity anisotropy. Taking the logging data of the Yingxi oilfield in the Qaidam Basin as an example, an anisotropic formation model considering drilling fluid invasion was built, and the numerical simulation results from the above methods were basically consistent with the logging data, which verified the accuracy of the method again. The results of this study lay a theoretical foundation for multiple-parameter inversion in anisotropic formation under complex well conditions.
文摘Accurate laboratory measurements and analysis of electrical properties of core samples are a prerequisite step to the evaluation of oil and gas reserves. In recent times, this evaluation technique has been adopted in carbon dioxide sequestration projects for estimating and monitoring carbon dioxide (CO2) accumulation in saline aquifers. Several papers have reported laboratory success in the use of resistivity measurements to monitor the flow and also estimate the volume of CO2 plume in geological formations. Such laboratory experiments did not capture the effect of CO2 -brine-rock interaction (CBRI) on saturation estimation. The possibility of a change in value resistivity due to CO2/brine/rock interactions, and the possible effect on CO2 monitoring and estimation are of immediate interest here. Preliminary results of an ongoing research work showed that a much longer experiment time accommodates CO2-brine-rock interaction which ultimately lead to change in rock resistivity. We hereby present the electrical behavior of carbonates to CO2/ brine/rock interaction during prolonged CO2 sequestration and the effect on saturation estimation. This electrical behavior and its possible effect on CO2 monitoring and estimation are discussed.
基金supported by China national petroleum corporation science and technology development projects(No.2011D_4101)
文摘The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.
基金supported by the National Natural Science Foundation of China (No.41074102)China International Science and Technology Cooperation (No.2009DFA61030)
文摘Nuclear magnetic resonance logging (NMR) is an open well logging method. Drilling mud resistivity, formation resistivity and sodium ions influence its radio frequency (RF) field strength and NMR logging signals. Research on these effects can provide an important basis for NMR logging data acquisition and interpretation. Three models, water-based drilling mud--water bearing formation, water- based drilling mud--oil bearing formation, oil-based drilling mud--water bearing formation, were studied by finite element method numerical simulation. The influences of drilling mud resistivity and formation resistivity on the NMR logging tool RF field and the influences of sodium ions on the NMR logging signals were simulated numerically. On the basis of analysis, RF field correction and sodium ion correction formulae were proposed and their application range was also discussed. The results indicate that when drilling mud resistivity and formation resistivity are 0.02 Ω·m and 0.2 Ω·m respectively, the attenuation index of centric NMR logging tool is 8.9% and 9.47% respectively. The RF field of an eccentric NMR logging tool is affected mainly by formation resistivity. When formation resistivity is 0.1 Ω·m, the attenuation index is 17.5%. For centric NMR logging tools, the signals coming from sodium ions can be up to 31.8% of total signal. Suggestions are proposed for further research into NMR logging tool correction method and response characteristics.
基金funded by the Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1605)partly supported by the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2017-18)Tight Oil Enrichment and Key Exploration and Development Technology Project of National Science and Technology Major Project(Nos.2016ZX05046-002 and 2016ZX05047-005)
文摘The Devonian Woodford Shale in the Anadarko Basin is a highly organic,hydrocarbon source rock.Accurate values of vitrinite reflectance(R_o)present in the Woodford Shale penetrated by 52 control wells were measured directly.These vitrinite reflectance values,when plotted against borehole resistivity for the middle member of the Woodford Shale in the wells,display a rarely reported finding that deep resistivity readings decrease as R_o increases when R_o is greater than 0.90%.This phenomenon may be attributed to that aromatic and resin compounds containing conjugated pi bonds generated within source rocks are more electrically conductive than aliphatic compounds.And aromatic and resin fractions were generated more than aliphatic fraction when source rock maturity further increases beyond oil peak.The finding of the relationship between deep resistivity and R_o may re-investigate the previously found linear relationship between source rock formation and aid to unconventional play exploration.
基金The work for this paper was supported by the National Natural Science Foundation of China under Projects No.41074099。
文摘A novel,highly efficient and accurate adaptive higher-order finite element method(hp-FEM)is used to simulate a multi-frequency resistivity loggingwhile-drilling(LWD)tool response in a borehole environment.Presented in this study are the vector expression of Maxwell’s equations,three kinds of boundary conditions,stability weak formulation of Maxwell’s equations,and automatic hpadaptivity strategy.The new hp-FEM can select optimal refinement and calculation strategies based on the practical formation model and error estimation.Numerical experiments show that the new hp-FEM has an exponential convergence rate in terms of relative error in a user-prescribed quantity of interest against the degrees of freedom,which provides more accurate results than those obtained using the adaptive h-FEM.The numerical results illustrate the high efficiency and accuracy of the method at a given LWD tool structure and parameters in different physical models,which further confirm the accuracy of the results using the Hermes library(http://hpfem.org/hermes)with a multi-frequency resistivity LWD tool response in a borehole environment.
基金This paper is supported by the Main Project of the National Tenth Five-Year Plan .
文摘The recognition and contrast of bed sets in parasequence is difficult in terrestrial basin high-resolution sequence stratigraphy. This study puts forward new methods for the boundary identification and contrast of bed sets on the basis of manifold logging data. The formation of calcareous interbeds, shale resistivity differences and the relation of reservoir resistivity to altitude are considered on the basis of log curve morphological characteristics, core observation, cast thin section, X-ray diffraction and scanning electron microscopy. The results show that the thickness of calcareous interbeds is between 0.5 m and 2 m, increasing on weathering crusts and faults. Calcareous interbeds occur at the bottom of a distributary channel and the top of a distributary mouth bar. Lower resistivity shale (4-5 Ω · m) and higher resistivity shale (〉 10Ω·m) reflect differences in sediment fountain or sediment microfacies. Reservoir resistivity increases with altitude. Calcareous interbeds may be a symbol of recognition for the boundary of bed sets and isochronous contrast bed sets, and shale resistivity differences may confirm the stack relation and connectivity of bed sets. Based on this, a high-resolution chronostratigraphic frame- work of Xi-1 segment in Shinan area, Junggar basin is presented, and the connectivity of bed sets and oil-water contact is confirmed. In this chronostratigraphic framework, the growth order, stack mode and space shape of bed sets are qualitatively and quantitatively described.
基金Supported by the National Natural Science Foundation
文摘The Numerical Mode-Matching(NMM) method is far more efficient than the integral equation method and the finite element method, but it could not be applied to problems such as low frequency electrode-type resistivity tool with different electrode radii. In this paper, this problem is dealt with using an approximate NMM method, and the simulation of hybrid laterolog-3 tool gives very good results and the computer time is only 1% more than the traditional NMM. It is an extension of the application of NMM method.
基金Supported by the National Natural Science Foundation of China (61001135)the Fundamental Research Funds for the Central Universities (YWF-11-03-Q-072)
文摘An invasive electrical resistance tomographic sensor was proposed for production logging in vertical oil well.The sensor consists of 24 electrodes that are fixed to the logging tool,which can move in the pipeline to acquire data on the conductivity distribution of oil/water mixture flow at different depths.A sensitivity-based algorithm was introduced to reconstruct the cross-sectional images.Analysis on the sensitivity of the sensor to the distribution of oil/water mixture flow was carried out to optimize the position of the imaging cross-section.The imaging results obtained using various boundary conditions at the pipe wall and the logging tool were compared.Eight typical models with various conductivity distributions were created and the measurement data were obtained by solving the forward problem of the sensor system.Image reconstruction was then implemented by using the simulation data for each model.Comparisons between the models and the reconstructed images show that the number and spatial distribution of the oil bubbles can be clearly identified.
文摘Since gas hydrate exists in three different forms at the same time such as pore filling,particle support and separate stratification,the calculation method of hydrate saturation using traditional shaly sand formation interpretation models is equivalent to considering only the simple case that hydrate exists as pore filling,and does not consider other complex states.Based on the analysis of hydrate resistivity experimental data and the general form of the resistivity-oil(gas)saturation relationship,the best simplified formula of hydrate saturation calculation is derived,then the physical meaning of the three items are clarified:they respectively represent the resistivity index-saturation relationship when hydrate particles are completely distributed in the pores of formation rocks,supported in the form of particles,and exist in layers,corresponding quantitative evaluation method of hydrate saturation is built.The field application shows that the hydrate saturation calculated by this method is closer to that obtained by sampling analysis.At the same time,it also provides a logging analysis basis for the effective development after hydrate exploration.
文摘In order to explore the mineral resources buried in sea mud,it is necessary to use seabed resistivity measuring equipment,which works closer to the sediments than ordinary ship-based geophysical measuring equipment. Because of the harsh environment of seafloor,high pressure and highly conductive seawater,marine magnetotelluric method developed slowly. The sea floor environment is similar to the environment of logging, According to the design of dual lateral logging equipment,a new equipment for seafloor electrical resistivity measurement is designed. Four 3D FEM models that contain resistivity abnormal targets are built to test the ability of this equipment to locate different shape of shallow buried resistivity abnormal targets in sea mud. The authors propose the method to correct the response curve while the bottom surface of this equipment is suspended or not parallel to the seafloor. The resistivity of targets can be calculated accurately.