First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked...First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.展开更多
The paper reveals the relation between the linear AND-OR gate and the emitter function logic. With theoretic calculation and PSPICE simulation, the paper proves that the linear AND-OR gates can work at super-high-spee...The paper reveals the relation between the linear AND-OR gate and the emitter function logic. With theoretic calculation and PSPICE simulation, the paper proves that the linear AND-OR gates can work at super-high-speed and can be multi-cascaded. On the basis of analyzing the high-speed switch units which coordinate with linear AND-OR gates, two kinds of emitter coupled logic circuits are designed. The paper also discusses the design principles of super-high-speed digital circuits, and some examples of combinational and sequential circuits using linear AND-OR gate are given.展开更多
In computing architecture, ALU plays a major role. Many promising applications are possible with ATMEGA microcontroller. ALU is a part of these microcontrollers. The performance of these microcontrollers can be improv...In computing architecture, ALU plays a major role. Many promising applications are possible with ATMEGA microcontroller. ALU is a part of these microcontrollers. The performance of these microcontrollers can be improved by applying Reversible Logic and Vedic Mathematics. In this paper, an efficient reversible Arithmetic and Logic Unit with reversible Vedic Multiplier is proposed and the simulation results show its effectiveness in reducing quantum cost, number of gates, and the total number of logical calculations.展开更多
Reversible logic is a new emerging technology with many promising applications in optical information processing, low power (Complementary Metal Oxide Semiconductor) CMOS design, (De Oxy RiboNucleic Acid) DNA computin...Reversible logic is a new emerging technology with many promising applications in optical information processing, low power (Complementary Metal Oxide Semiconductor) CMOS design, (De Oxy RiboNucleic Acid) DNA computing, etc. In industrial automation, comparators play an important role in segregating faulty patterns from good ones. In previous works, these comparators have been implemented with more number of reversible gates and computational complexity. All these comparators use propagation technique to compare the data. This will reduce the efficiency of the comparators. To overcome the problem, this paper proposes an efficient comparator using (Thapliyal Ranganathan) TR gate utilizing full subtraction and half subtraction algorithm which will improve the computation efficiency. The comparator design using half subtraction algorithm shows an improvement in terms of quantum cost. The comparator design using full subtraction algorithm shows effectiveness in reducing number of reversible gates required and garbage output.展开更多
结合可逆逻辑电路综合的多种算法,提出了一种新颖高效的算法,自动构造正极性R eed-M u ller展开式(RM),在生成量子可逆逻辑电路的解空间树上,采用总体层次遍历,局部深度搜索,借鉴模板优化技术,构造限界函数快速删除无解或非最优解的分枝...结合可逆逻辑电路综合的多种算法,提出了一种新颖高效的算法,自动构造正极性R eed-M u ller展开式(RM),在生成量子可逆逻辑电路的解空间树上,采用总体层次遍历,局部深度搜索,借鉴模板优化技术,构造限界函数快速删除无解或非最优解的分枝,优先探测RM中的因子,以极高的效率生成最优电路.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60273093)the Natural Science Foundation of Zhejinag Province(No. Y104135) the Student Sci-entific Research Foundation of Ningbo university (No.C38).
文摘First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks--Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure. Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25um CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL) and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
基金Supported by the National Natural Science Foundation of China
文摘The paper reveals the relation between the linear AND-OR gate and the emitter function logic. With theoretic calculation and PSPICE simulation, the paper proves that the linear AND-OR gates can work at super-high-speed and can be multi-cascaded. On the basis of analyzing the high-speed switch units which coordinate with linear AND-OR gates, two kinds of emitter coupled logic circuits are designed. The paper also discusses the design principles of super-high-speed digital circuits, and some examples of combinational and sequential circuits using linear AND-OR gate are given.
文摘In computing architecture, ALU plays a major role. Many promising applications are possible with ATMEGA microcontroller. ALU is a part of these microcontrollers. The performance of these microcontrollers can be improved by applying Reversible Logic and Vedic Mathematics. In this paper, an efficient reversible Arithmetic and Logic Unit with reversible Vedic Multiplier is proposed and the simulation results show its effectiveness in reducing quantum cost, number of gates, and the total number of logical calculations.
文摘Reversible logic is a new emerging technology with many promising applications in optical information processing, low power (Complementary Metal Oxide Semiconductor) CMOS design, (De Oxy RiboNucleic Acid) DNA computing, etc. In industrial automation, comparators play an important role in segregating faulty patterns from good ones. In previous works, these comparators have been implemented with more number of reversible gates and computational complexity. All these comparators use propagation technique to compare the data. This will reduce the efficiency of the comparators. To overcome the problem, this paper proposes an efficient comparator using (Thapliyal Ranganathan) TR gate utilizing full subtraction and half subtraction algorithm which will improve the computation efficiency. The comparator design using half subtraction algorithm shows an improvement in terms of quantum cost. The comparator design using full subtraction algorithm shows effectiveness in reducing number of reversible gates required and garbage output.