The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic...The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic system, regardless of irradiation and temperature variations. In this research, we present a novel technique to improve the control’s performances optimization of the system consisting of a photovoltaic panel, a buck converter and a load. Simulations of different parts of the system are developed under Matlab/Simulink, thus allowing a comparison between the performances of the three studied controllers: “Fuzzy TS”, “P&O” and “PSO”. The three algorithms of MPPT associated with these techniques are tested in different meteorological conditions. The obtained results, in different operating conditions, reveal a clear improvement of controlling performances of MPPT of a photovoltaic system when the PSO tracking technique is used.展开更多
The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competi...The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competition is spurring the search for improved methods and tools. The main drivers are quality, life-cycle cost, and time-to-market. Improved design efficiency and accuracy may have an enormous impact on the economic viability of the final product. The use of computer-aided systems can assist the designer in selecting the ap- propriate material these may potentially reduce product cost and time-to-market while assisting the concur- rent engineering activities, thereby resolving problems related to materials presented during the initial phase of design. This paper focuses on specific issues such as material selection at early design stage. In this paper material selection algorithm is developed using fuzzy logic technique for selection of proper material from database as per design engineers’ criteria. The information obtained from the selection algorithm is ex- changed through a properly secured web page through pure internet communication to different users in the enterprise so that it can create concurrent engineering environment throughout the product life cycle.展开更多
文摘The Maximum Power Point Tracker (MPPT) is the optimum operating point of a photovoltaic module. It plays a very important role to obtain the maximum power of a solar panel as it allows an optimal use of a photovoltaic system, regardless of irradiation and temperature variations. In this research, we present a novel technique to improve the control’s performances optimization of the system consisting of a photovoltaic panel, a buck converter and a load. Simulations of different parts of the system are developed under Matlab/Simulink, thus allowing a comparison between the performances of the three studied controllers: “Fuzzy TS”, “P&O” and “PSO”. The three algorithms of MPPT associated with these techniques are tested in different meteorological conditions. The obtained results, in different operating conditions, reveal a clear improvement of controlling performances of MPPT of a photovoltaic system when the PSO tracking technique is used.
文摘The selection of proper materials for a structural component is critical in engineering design. Existing design procedures may currently be sufficient, especially where experience exists, but fierce industrial competition is spurring the search for improved methods and tools. The main drivers are quality, life-cycle cost, and time-to-market. Improved design efficiency and accuracy may have an enormous impact on the economic viability of the final product. The use of computer-aided systems can assist the designer in selecting the ap- propriate material these may potentially reduce product cost and time-to-market while assisting the concur- rent engineering activities, thereby resolving problems related to materials presented during the initial phase of design. This paper focuses on specific issues such as material selection at early design stage. In this paper material selection algorithm is developed using fuzzy logic technique for selection of proper material from database as per design engineers’ criteria. The information obtained from the selection algorithm is ex- changed through a properly secured web page through pure internet communication to different users in the enterprise so that it can create concurrent engineering environment throughout the product life cycle.