A lot of experimental methods have been brought forth to assess the dynamic character of the arc welding power source, but up to now, this issue has not been solved very well. In this paper, based on the fuzzy logic r...A lot of experimental methods have been brought forth to assess the dynamic character of the arc welding power source, but up to now, this issue has not been solved very well. In this paper, based on the fuzzy logic reasoning method, a dynamic character assessing model for the arc welding power source was established and used to analyze the dynamic character of the welding power source. Three different types of welding machine have been tested, and the characteristic information of the electrical signals such as re-striking arc voltage, low welding current and so on of the welding process were extracted accurately by using a self-developed welding dynamic arc wavelet analyzer. The experimental results indicate that this model can be used as a new assessing method for the dynamic character of the arc welding power source.展开更多
This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added t...This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added the importance of power quality studies, for concrete illustration, Custom Power Devices (CPD) and Flexible AC Transmission position (FACTS) devices. The approach offered in this paper utilizes the series and shunt compensator of Unified Power Quality Conditioner (UPQC) to inject a compensation voltage in-phase with the source current over voltage fluctuations. The execution of two structures of UPQC, left-shunt (L-UPQC) and right-shunt (R-UPQC) are investigated under diverse operating conditions based on the fuzzy logic controller to raise the value of power quality of a single feeder distribution system by MATLAB/Simulink programming. Various power quality issues have been analyzed in this study. Finally, the right shunt UPQC is outperformed in this proposed power system.展开更多
This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromech...This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromechanical oscillations, which can be damped using Power System Stabilizer (PSS). A detailed modeling of DFIG fed wind system including controller has been carried out. The damping controller is designed using fuzzy logic to damp the oscillatory modes for stability. The robust performance of the system with controllers has been evaluated using eigen value analysis and time domain simulations under various disturbances and wind speeds. The effectiveness of the proposed fuzzy based PSS is compared with the performance of conventional PSS implemented in the wind system.展开更多
This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consi...This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consists of PV panel, boost converter, and maximum power point tack MPPT algorithm is developed. Three different conditions are simulated: 1) Uniform irradiation;2) Sudden changing;3) Partial shading. Results showed that fuzzy controller successfully find MPP for all different weather conditions studied. FLC has excellent ability to track MPP in less than 0.01 second when PV is subjected to sudden changes and partial shading in irradiation.展开更多
In this research, a fast methodology to calculate the exact value of the average dynamic power consumption for CMOS combinational logic circuits is developed. The delay model used is the unit-delay model where all gat...In this research, a fast methodology to calculate the exact value of the average dynamic power consumption for CMOS combinational logic circuits is developed. The delay model used is the unit-delay model where all gates have the same propagation delay. The main advantages of this method over other techniques are its accuracy, as it is deterministic and it requires less computational effort compared to exhaustive simulation approaches. The methodology uses the Logic Pictures concept for obtaining the nodes’ toggle rates. The proposed method is applied to well-known circuits and the results are compared to exhaustive simulation and Monte Carlosimulation methods.展开更多
The paper proposed an approach to study the power system voltage coordinated control using Linear Temporal Logic (LTL). First, the hybrid Automata model for power system voltage control was given, and a hierarchical c...The paper proposed an approach to study the power system voltage coordinated control using Linear Temporal Logic (LTL). First, the hybrid Automata model for power system voltage control was given, and a hierarchical coordinated voltage control framework was described in detail. In the hierarchical control structure, the high layer is the coordinated layer for global voltage control, and the low layer is the power system controlled. Then, the paper introduced the LTL language, its specification formula and basic method for control. In the high layer, global voltage coordinated control specification was defined by LTL specification formula. In order to implement system voltage coordinated control, the LTL specification formula was transformed into hybrid Automata model by the proposed algorithms. The hybrid Automata in high layer could coordinate the different distributed voltage controller, and have constituted a closed loop global voltage control system satisfied the LTL specification formula. Finally, a simple example of power system voltage control include the OLTC controller, the switched capacitor controller and the under-voltage shedding load controller was given for simulating analysis and verification by the proposed approach for power system coordinated voltage control. The results of simulation showed that the proposed method in the paper is feasible.展开更多
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of eme...Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.展开更多
To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is gi...To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.展开更多
This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). ...This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.展开更多
Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the deriv...Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the derived clock having no glitch and no skew. The design of a decimal counter with half-frequency division shows that by using the synchronous derived clock the counter has lower power dissipation as well as simpler combinational logic. Computer simulation shows 20% power saving.展开更多
In today’s digital era, developing digital circuits is bounded by the research towards investigating various nano devices. This paper provides the design of compact Baugh-Wooley multiplier using reversible logic. Eve...In today’s digital era, developing digital circuits is bounded by the research towards investigating various nano devices. This paper provides the design of compact Baugh-Wooley multiplier using reversible logic. Even though various researches have been done for designing reversible multiplier, this work is the first in the literature to use Baugh-Wooley algorithm using reversible logic. In this work, a new 5 × 5 reversible multiplier cell is proposed which will be useful in designing Baugh-Wooley multiplier. The proposed single multiplier cell is able to perform addition of a 1 × 1 product with the sum and carry from the previous cell. This reversible multiplier cell is useful in building up regularity in the array multipliers. The Toffoli gate synthesis of the proposed reversible multiplier cell is also given.展开更多
基金This work is supported by Guangdong Natural Science Fund (04020100)
文摘A lot of experimental methods have been brought forth to assess the dynamic character of the arc welding power source, but up to now, this issue has not been solved very well. In this paper, based on the fuzzy logic reasoning method, a dynamic character assessing model for the arc welding power source was established and used to analyze the dynamic character of the welding power source. Three different types of welding machine have been tested, and the characteristic information of the electrical signals such as re-striking arc voltage, low welding current and so on of the welding process were extracted accurately by using a self-developed welding dynamic arc wavelet analyzer. The experimental results indicate that this model can be used as a new assessing method for the dynamic character of the arc welding power source.
文摘This paper presents a gross examination about Unified Power Quality Conditioner (UPQC) to invigorate the power issues at the distribution level of the electrical system. Nowadays power electronics research has added the importance of power quality studies, for concrete illustration, Custom Power Devices (CPD) and Flexible AC Transmission position (FACTS) devices. The approach offered in this paper utilizes the series and shunt compensator of Unified Power Quality Conditioner (UPQC) to inject a compensation voltage in-phase with the source current over voltage fluctuations. The execution of two structures of UPQC, left-shunt (L-UPQC) and right-shunt (R-UPQC) are investigated under diverse operating conditions based on the fuzzy logic controller to raise the value of power quality of a single feeder distribution system by MATLAB/Simulink programming. Various power quality issues have been analyzed in this study. Finally, the right shunt UPQC is outperformed in this proposed power system.
文摘This paper focuses on the small signal stability analysis of Doubly-Fed Induction Generator (DFIG) fed wind power system under three modes of operation. The system stability is affected by the influence of electromechanical oscillations, which can be damped using Power System Stabilizer (PSS). A detailed modeling of DFIG fed wind system including controller has been carried out. The damping controller is designed using fuzzy logic to damp the oscillatory modes for stability. The robust performance of the system with controllers has been evaluated using eigen value analysis and time domain simulations under various disturbances and wind speeds. The effectiveness of the proposed fuzzy based PSS is compared with the performance of conventional PSS implemented in the wind system.
文摘This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consists of PV panel, boost converter, and maximum power point tack MPPT algorithm is developed. Three different conditions are simulated: 1) Uniform irradiation;2) Sudden changing;3) Partial shading. Results showed that fuzzy controller successfully find MPP for all different weather conditions studied. FLC has excellent ability to track MPP in less than 0.01 second when PV is subjected to sudden changes and partial shading in irradiation.
文摘In this research, a fast methodology to calculate the exact value of the average dynamic power consumption for CMOS combinational logic circuits is developed. The delay model used is the unit-delay model where all gates have the same propagation delay. The main advantages of this method over other techniques are its accuracy, as it is deterministic and it requires less computational effort compared to exhaustive simulation approaches. The methodology uses the Logic Pictures concept for obtaining the nodes’ toggle rates. The proposed method is applied to well-known circuits and the results are compared to exhaustive simulation and Monte Carlosimulation methods.
文摘The paper proposed an approach to study the power system voltage coordinated control using Linear Temporal Logic (LTL). First, the hybrid Automata model for power system voltage control was given, and a hierarchical coordinated voltage control framework was described in detail. In the hierarchical control structure, the high layer is the coordinated layer for global voltage control, and the low layer is the power system controlled. Then, the paper introduced the LTL language, its specification formula and basic method for control. In the high layer, global voltage coordinated control specification was defined by LTL specification formula. In order to implement system voltage coordinated control, the LTL specification formula was transformed into hybrid Automata model by the proposed algorithms. The hybrid Automata in high layer could coordinate the different distributed voltage controller, and have constituted a closed loop global voltage control system satisfied the LTL specification formula. Finally, a simple example of power system voltage control include the OLTC controller, the switched capacitor controller and the under-voltage shedding load controller was given for simulating analysis and verification by the proposed approach for power system coordinated voltage control. The results of simulation showed that the proposed method in the paper is feasible.
文摘Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation.
基金Supported by the National Natural Science Foundation of China ( 50975027 )the Fundamental Research Funds for the Central Universities( N110303007)
文摘To solve the problem of power distribution for hybrid tracked vehicles (HTV), a supervi- sory control strategy is proposed. Firstly, power system integration is analyzed and modeled. Then the control algorithm is given. Two fuzzy logics are used to realize the coordination control over each power unit. One controls power distribution based on the load power and battery state of charge (SOC). The other manage the power during regenerating braking. To validate the presented control strategy, a "driver and controller" in the loop simulation platform is built based on dSPACE system and real-time simulation is made. The simulation results show that the strategy presented can solve the power distribution problem of hybrid tracked vehicles correctly and effectively.
文摘This article investigates the power quality enhancement in power system using one of the most famous series converter based FACTS controller like IPFC (Interline Power Flow Controller) in Power Injection Model (PIM). The parameters of PIM are derived with help of the Newton-Raphson power flow algorithm. In general, a sample test power system without FACTs devices has generated more reactive power, decreased real power, more harmonics, small power factor and poor dynamic performance under line and load variations. In order to improve the real power, compensating the reactive power, proficient power factor and excellent load voltage regulation in the sample test power system, an IPFC is designed. The D-Q technique is utilized here to derive the reference current of the converter and its D.C link capacitor voltage is regulated. Also, the reference voltage of the inverter is arrived by park transformation technique and its load voltage is controlled. Here, a sample 230 KV test power system is taken for study. Further as the conventional PI controllers are designed at one nominal operating point they are not competent to respond satisfactorily in dynamic operating conditions. This can be circumvented by a Fuzzy and Neural network based IPFC and its detailed Simulink model is developed using MATLAB and the overall performance analysis is carried out under different operating state of affairs.
基金Supported by the NSF of China (# 69773034) and DARPA under contract # F33615-95-C-1627
文摘Based on analyzing significance of controlling clock in design of low power sequential circuits, this paper proposes a technique that the gating signal is derived from the master latch in a flip-flop to make the derived clock having no glitch and no skew. The design of a decimal counter with half-frequency division shows that by using the synchronous derived clock the counter has lower power dissipation as well as simpler combinational logic. Computer simulation shows 20% power saving.
文摘In today’s digital era, developing digital circuits is bounded by the research towards investigating various nano devices. This paper provides the design of compact Baugh-Wooley multiplier using reversible logic. Even though various researches have been done for designing reversible multiplier, this work is the first in the literature to use Baugh-Wooley algorithm using reversible logic. In this work, a new 5 × 5 reversible multiplier cell is proposed which will be useful in designing Baugh-Wooley multiplier. The proposed single multiplier cell is able to perform addition of a 1 × 1 product with the sum and carry from the previous cell. This reversible multiplier cell is useful in building up regularity in the array multipliers. The Toffoli gate synthesis of the proposed reversible multiplier cell is also given.