期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Low Power Computing Paradigms Based on Emerging Non-Volatile Nanodevices 被引量:1
1
作者 G.-F.Wang W.Kang +4 位作者 Y.-Q.Cheng J.Nan J.-O.Klein Y.-G.Zhang W.-S.Zhao 《Journal of Electronic Science and Technology》 CAS 2014年第2期163-172,共10页
Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of eme... Traditional digital processing approaches are based on semiconductor transistors, which suffer from high power consumption, aggravating with technology node scaling. To solve definitively this problem, a number of emerging non-volatile nanodevices are under intense investigations. Meanwhile, novel computing circuits are invented to dig the full potential of the nanodevices. The combination of non-volatile nanodevices with suitable computing paradigms have many merits compared with the complementary metal-oxide-semiconductor transistor (CMOS) technology based structures, such as zero standby power, ultra-high density, non-volatility, and acceptable access speed. In this paper, we overview and compare the computing paradigms based on the emerging nanodevices towards ultra-low dissipation. 展开更多
关键词 Emerging nanodevices logic in memory low-power computing paradigms MEMRISTOR neuromorphic NORMALLY-OFF reconfigurable logic
下载PDF
Reconfigurable logic and in-sensor encryption operations in an asymmetrically tunable van der Waals heterostructure
2
作者 Fan Gong Wenjie Deng +7 位作者 Yi Wu Fengming Liu Yihao Guo Zelin Che Jingjie Li Jingzhen Li Yang Chai Yongzhe Zhang 《Nano Research》 SCIE EI CSCD 2024年第4期3113-3119,共7页
Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrat... Reconfigurable devices can be used to achieve multiple logic operation and intelligent optical sensing with low power consumption,which is promising candidates for new generation electronic and optoelectronic integrated circuits.However,the versatility is still limited and need to be extended by the device architectures design.Here,we report an asymmetrically gate two-dimensional(2D)van der Waals heterostructure with hybrid dielectric layer SiO_(2)/hexagonal boron nitride(h-BN),which enable rich function including reconfigurable logic operation and in-sensor information encryption enabled by both volatile and non-volatile optoelectrical modulation.When the partial gate is grounded,the non-volatile light assisted electrostatic doping endowed partially reconfigurable doping between n-type and p-type,which allow the switching of logic XOR and not implication(NIMP).When the global gate is grounded,additionally taking the optical signal as another input signal,logic AND and OR is realized by combined regulation of the light and localized gate voltage.Depending on the high on/off current ratio approaching 105 and reliable&switchable logic gate,in-sensor information encryption and decryption is demonstrated by manipulating the logic output.Hence,these results provide strong extension for current reconfigurable electronic and optoelectronic devices. 展开更多
关键词 in-sensor encryption reconfigurable logic van der Waals heterostructure asymmetrical tunable architecture
原文传递
Dynamic survivable mapping through reconfiguration in IP over WDM network
3
作者 ZUO Yong-xia WANG Guo-qiang +1 位作者 GUO Bing-li ZUO Chun-cheng 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2013年第4期99-105,共7页
A new approach for network survivability problem in Intemet protocol (IP) over wavelength division multiplexing (WDM) optical network is proposed to enhance the IP layer restorability under physical link failure t... A new approach for network survivability problem in Intemet protocol (IP) over wavelength division multiplexing (WDM) optical network is proposed to enhance the IP layer restorability under physical link failure through logical topology reconfiguration. More specifically, after traffic arrival and departure, reconfiguring the logical topology correspondingly is helpful to minimize the traffic disruption after physical link failure. So, in this paper, this problem is proposed for first time and formulated as an integer linear programming (ILP) problem. And then, two heuristic algorithms are proposed. The performance of proposed algorithms have been evaluated through simulations, and the results show that reconfiguring the logical topology dynamically could achieve more than 20% improvement of the restorability of traffic in IP layer, but with acceptable resource cost. 展开更多
关键词 survivable mapping IP over WDM resource optimization logical topology dynamic reconfiguration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部