Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenario...Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.展开更多
The design of telecommunication network with capacity constraints of links, routers and ports of routers is considered in this paper. Specially, we limit each demand flow traversed through a pre-specified maximal numb...The design of telecommunication network with capacity constraints of links, routers and ports of routers is considered in this paper. Specially, we limit each demand flow traversed through a pre-specified maximal number of links (called hops) under node failure scenarios in IP layer network. Such a design must be the most cost-effective and ensure that feasible flows continue to exist even when any relay node of the network fails. We propose a reliable mixed-integer programming (MIP) model with multi-scenario constraints to optimally design a minimum-cost survivable IP network that continues to support a good communication under any node failure scenario. Then we transform the MIP model into many single scenario models, that is, simplified MIPs, nonlinear programming (NLP) models and MIP models under Benders decomposition Then we transform the MIP model into many single scenario models, that is, simplified MIPs, nonlinear programming (NLP) models and MIP models under Benders decomposition. Three heuristic methods are proposed to solve these models including branch-and-bound algorithm, global algorithm for NLP, and heuristic algorithm based on benders decomposition. We mainly study the application of Benders decomposition method, where dual model and bounding procedures are given for each MIP model under Benders decomposition at each scenario. The results of our computational experiments validate the effectiveness of the proposed models and algorithms.展开更多
In the past, researchers have applied Bender’s decomposition to distribution problem and used feasibility constraint to speed up the performance of Bender’s decomposition. Further, the application of Branch and Boun...In the past, researchers have applied Bender’s decomposition to distribution problem and used feasibility constraint to speed up the performance of Bender’s decomposition. Further, the application of Branch and Bound to single-stage multi-commodity single-period warehouse location problem (SSMCSPWLP) with strong constraints has shown that they are more effective. It was also shown in the previous research (in the context of Branch and Bound Methodology) that hybrid formulation for the single-stage single-period multi-commodity warehouse location problem yielded superior results. In this paper we apply Benders’ decomposition to strong and weak formulations of single-stage multi-commodity multi-period warehouse location problem (SSMCMPWLP). As suggested in the previous literature we put feasibility constraints in the pure integer sub- problem to speed up the performance of Benders’ decomposition. We also develop an additional cut (constraint that is again added to pure integer sub-problem) and show that it further speeded up Benders’ Decomposition. This research led to the possibility of applying Benders’ Decomposition to the hybrid formulation of SSMCMPWLP in future.展开更多
To employ the network resources more effectively and fl exibly,cloud radio access network(C-RAN) adopts centralized network construction and management. Since the new network characteristics,the self-healing is reliab...To employ the network resources more effectively and fl exibly,cloud radio access network(C-RAN) adopts centralized network construction and management. Since the new network characteristics,the self-healing is reliable distinguish compared with previous studies. This paper drives a solution for selfhealing based on cooperative transmission and power adjustment under C-RAN self-healing management architecture. This compensation model with the aim to maximize the number of connected UEs and optimize power regulation is solved by Benders' decomposition algorithm. And through the simulation,this paper verifies the speediness and effectiveness of this scheme.展开更多
基金the Science and Technology Project of State Grid Corporation of China,Grant Number 5108-202304065A-1-1-ZN.
文摘Stochastic unit commitment is one of the most powerful methods to address uncertainty. However, the existingscenario clustering technique for stochastic unit commitment cannot accurately select representative scenarios,which threatens the robustness of stochastic unit commitment and hinders its application. This paper providesa stochastic unit commitment with dynamic scenario clustering based on multi-parametric programming andBenders decomposition. The stochastic unit commitment is solved via the Benders decomposition, which decouplesthe primal problem into the master problem and two types of subproblems. In the master problem, the committedgenerator is determined, while the feasibility and optimality of generator output are checked in these twosubproblems. Scenarios are dynamically clustered during the subproblem solution process through the multiparametric programming with respect to the solution of the master problem. In other words, multiple scenariosare clustered into several representative scenarios after the subproblem is solved, and the Benders cut obtainedby the representative scenario is generated for the master problem. Different from the conventional stochasticunit commitment, the proposed approach integrates scenario clustering into the Benders decomposition solutionprocess. Such a clustering approach could accurately cluster representative scenarios that have impacts on theunit commitment. The proposed method is tested on a 6-bus system and the modified IEEE 118-bus system.Numerical results illustrate the effectiveness of the proposed method in clustering scenarios. Compared withthe conventional clustering method, the proposed method can accurately select representative scenarios whilemitigating computational burden, thus guaranteeing the robustness of unit commitment.
文摘The design of telecommunication network with capacity constraints of links, routers and ports of routers is considered in this paper. Specially, we limit each demand flow traversed through a pre-specified maximal number of links (called hops) under node failure scenarios in IP layer network. Such a design must be the most cost-effective and ensure that feasible flows continue to exist even when any relay node of the network fails. We propose a reliable mixed-integer programming (MIP) model with multi-scenario constraints to optimally design a minimum-cost survivable IP network that continues to support a good communication under any node failure scenario. Then we transform the MIP model into many single scenario models, that is, simplified MIPs, nonlinear programming (NLP) models and MIP models under Benders decomposition Then we transform the MIP model into many single scenario models, that is, simplified MIPs, nonlinear programming (NLP) models and MIP models under Benders decomposition. Three heuristic methods are proposed to solve these models including branch-and-bound algorithm, global algorithm for NLP, and heuristic algorithm based on benders decomposition. We mainly study the application of Benders decomposition method, where dual model and bounding procedures are given for each MIP model under Benders decomposition at each scenario. The results of our computational experiments validate the effectiveness of the proposed models and algorithms.
文摘In the past, researchers have applied Bender’s decomposition to distribution problem and used feasibility constraint to speed up the performance of Bender’s decomposition. Further, the application of Branch and Bound to single-stage multi-commodity single-period warehouse location problem (SSMCSPWLP) with strong constraints has shown that they are more effective. It was also shown in the previous research (in the context of Branch and Bound Methodology) that hybrid formulation for the single-stage single-period multi-commodity warehouse location problem yielded superior results. In this paper we apply Benders’ decomposition to strong and weak formulations of single-stage multi-commodity multi-period warehouse location problem (SSMCMPWLP). As suggested in the previous literature we put feasibility constraints in the pure integer sub- problem to speed up the performance of Benders’ decomposition. We also develop an additional cut (constraint that is again added to pure integer sub-problem) and show that it further speeded up Benders’ Decomposition. This research led to the possibility of applying Benders’ Decomposition to the hybrid formulation of SSMCMPWLP in future.
基金partially the 863 program (2014AA01A701)National Nature Science Foundation of China (61271187)
文摘To employ the network resources more effectively and fl exibly,cloud radio access network(C-RAN) adopts centralized network construction and management. Since the new network characteristics,the self-healing is reliable distinguish compared with previous studies. This paper drives a solution for selfhealing based on cooperative transmission and power adjustment under C-RAN self-healing management architecture. This compensation model with the aim to maximize the number of connected UEs and optimize power regulation is solved by Benders' decomposition algorithm. And through the simulation,this paper verifies the speediness and effectiveness of this scheme.