Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and...Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.展开更多
The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreas...The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreasing sequence of integers, τ(n)<n and lim n →∞ τ(n) =∞. A sufficient condition for the existence of positive solutions of the equation was given.展开更多
This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real n...This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.展开更多
文摘Consider the nonautonomous delay logistic equation △yn=pnyn(1-yn-ln/k),n≥0, where {Pn}n≥0 is a sequence of nonnegative real numbers, {In}n≥0 is a sequence of positive integers satisfying n→∞lim(n-ln)=∞, and k is a positive constant. Only solutions which are positive for n ≥ 0 are considered. We obtain a new sufficient for all positive solutions of (1) to oscillate about k which contains the corresponding result in [2] when i = 1.
文摘The author studied the existence of positive solutions of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n =0,1,2,.... where { p n } is a sequence of positive real numbers, { τ(n) } is a nondecreasing sequence of integers, τ(n)<n and lim n →∞ τ(n) =∞. A sufficient condition for the existence of positive solutions of the equation was given.
文摘This paper studies the global attractivity of the positive equilibrium 1 of the delay logistic difference equation Δ y n=p ny n(1-y τ(n) ), n=0,1,2,...,(*)where {p n} is a sequence of positive real numbers, {τ(n)} is a nondecreasing sequence of integers, τ(n)<n and lim n→∞τ(n)=∞ .It is proved that ifnj=τ(n)p j≤54 for sufficiently large n and ∞j=0p j=∞,then all positive solutions of Eq.(*) tend to 1 as n→∞ .The results improve the existing results in literature.