期刊文献+
共找到2,538篇文章
< 1 2 127 >
每页显示 20 50 100
A comparison of model choice strategies for logistic regression
1
作者 Markku Karhunen 《Journal of Data and Information Science》 CSCD 2024年第1期37-52,共16页
Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/appr... Purpose:The purpose of this study is to develop and compare model choice strategies in context of logistic regression.Model choice means the choice of the covariates to be included in the model.Design/methodology/approach:The study is based on Monte Carlo simulations.The methods are compared in terms of three measures of accuracy:specificity and two kinds of sensitivity.A loss function combining sensitivity and specificity is introduced and used for a final comparison.Findings:The choice of method depends on how much the users emphasize sensitivity against specificity.It also depends on the sample size.For a typical logistic regression setting with a moderate sample size and a small to moderate effect size,either BIC,BICc or Lasso seems to be optimal.Research limitations:Numerical simulations cannot cover the whole range of data-generating processes occurring with real-world data.Thus,more simulations are needed.Practical implications:Researchers can refer to these results if they believe that their data-generating process is somewhat similar to some of the scenarios presented in this paper.Alternatively,they could run their own simulations and calculate the loss function.Originality/value:This is a systematic comparison of model choice algorithms and heuristics in context of logistic regression.The distinction between two types of sensitivity and a comparison based on a loss function are methodological novelties. 展开更多
关键词 model choice logistic regression Logit regression Monte Carlo simulations Sensitivity SPECIFICITY
下载PDF
Utilization of Logistical Regression to the Modified Sine-Gordon Model in the MST Experiment
2
作者 Nizar J. Alkhateeb Hameed K. Ebraheem Eman M. Al-Otaibi 《Open Journal of Modelling and Simulation》 2024年第2期43-58,共16页
In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), ob... In this paper, a logistical regression statistical analysis (LR) is presented for a set of variables used in experimental measurements in reversed field pinch (RFP) machines, commonly known as “slinky mode” (SM), observed to travel around the torus in Madison Symmetric Torus (MST). The LR analysis is used to utilize the modified Sine-Gordon dynamic equation model to predict with high confidence whether the slinky mode will lock or not lock when compared to the experimentally measured motion of the slinky mode. It is observed that under certain conditions, the slinky mode “locks” at or near the intersection of poloidal and/or toroidal gaps in MST. However, locked mode cease to travel around the torus;while unlocked mode keeps traveling without a change in the energy, making it hard to determine an exact set of conditions to predict locking/unlocking behaviour. The significant key model parameters determined by LR analysis are shown to improve the Sine-Gordon model’s ability to determine the locking/unlocking of magnetohydrodyamic (MHD) modes. The LR analysis of measured variables provides high confidence in anticipating locking versus unlocking of slinky mode proven by relational comparisons between simulations and the experimentally measured motion of the slinky mode in MST. 展开更多
关键词 Madison Symmetric Torus (MST) Magnetohydrodyamic (MHD) SINE-GORDON TOROIDAL Dynamic modelling Reversed Field Pinch (RFP) logistical regression
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
3
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization logistic regression model K-Means Clustering Analysis Elbow Rule Parameter Verification
下载PDF
Predictive Modeling for Analysis of Coronavirus Symptoms Using Logistic Regression
4
作者 Anatoli Nachev 《Journal of Mechanics Engineering and Automation》 2023年第4期93-99,共7页
This paper presents a case study on the IPUMS NHIS database,which provides data from censuses and surveys on the health of the U.S.population,including data related to COVID-19.By addressing gaps in previous studies,w... This paper presents a case study on the IPUMS NHIS database,which provides data from censuses and surveys on the health of the U.S.population,including data related to COVID-19.By addressing gaps in previous studies,we propose a machine learning approach to train predictive models for identifying and measuring factors that affect the severity of COVID-19 symptoms.Our experiments focus on four groups of factors:demographic,socio-economic,health condition,and related to COVID-19 vaccination.By analysing the sensitivity of the variables used to train the models and the VEC(variable effect characteristics)analysis on the variable values,we identify and measure importance of various factors that influence the severity of COVID-19 symptoms. 展开更多
关键词 COVID-19 supervised learning modelS CLASSIFICATION logistic regression.
下载PDF
社会融合视角下农民工城市定居意愿探赜——基于Logistic模型的实证研究
5
作者 王敦辉 甘满堂 《安徽乡村振兴研究》 2024年第3期9-17,共9页
农民工的城市定居意愿影响农民工市民化进程,进而影响我国新型城镇化建设与乡村振兴。文章基于2023年873份农民工问卷,在社会融合视角下,构建二元logistic回归模型对农民工的城市定居意愿影响因素进行研究。实证研究表明,只有58%的农民... 农民工的城市定居意愿影响农民工市民化进程,进而影响我国新型城镇化建设与乡村振兴。文章基于2023年873份农民工问卷,在社会融合视角下,构建二元logistic回归模型对农民工的城市定居意愿影响因素进行研究。实证研究表明,只有58%的农民工具有城市定居意愿。农民工性别、年龄、婚姻状况、教育水平、家庭随迁人口数量、城市迁移时间长短等因素对定居意愿均没有显著影响;参加本地医保、身份认同、经济收入、健康状况、承包地等因素对农民工的城市定居意愿影响较大;社会参与度、闲暇生活、居住证等在一定程度上提升农民工的定居意愿。如何持续提升农民工的城市定居意愿,文章从社会关系融合、经济收入及公共服务均等化等三个方面提出了对策建议。 展开更多
关键词 农民工 社会融合视角 城市定居意愿 logistic回归模型
下载PDF
基于Logistic回归的国际时尚品牌销售渠道选择影响因素分析
6
作者 田欢 《毛纺科技》 CAS 北大核心 2024年第1期51-58,共8页
为了帮助国际时尚品牌合理、科学地选择销售渠道和制定销售策略,以满足不同地区不同类型消费者的需求,提高品牌市场竞争力。首先依据访谈数据确定分析因子,建立影响国际时尚品牌销售渠道选择的多因素分析理论模型,提出可能影响国际品牌... 为了帮助国际时尚品牌合理、科学地选择销售渠道和制定销售策略,以满足不同地区不同类型消费者的需求,提高品牌市场竞争力。首先依据访谈数据确定分析因子,建立影响国际时尚品牌销售渠道选择的多因素分析理论模型,提出可能影响国际品牌销售渠道选择的消费者偏好分析指标体系,从消费者个人特征、心理偏好、品类偏好以及时尚认知4个维度设计问卷并进行调研。运用SPSS软件对问卷回收数据进行录入,并采用Logistic回归分析数据,从而验证模型假设。通过分析结果可知,以上4个维度下的诸多影响因子均对国际品牌销售渠道的选择产生显著影响,并给出了具体的指导策略。品牌商可以根据研究结果制定对应的销售策略,以有效提高销售渠道利用率,最大化提升品牌销售业绩。 展开更多
关键词 销售渠道 国际时尚品牌 logistic回归 影响因子
下载PDF
贝叶斯Logistic回归模型在中老年人心脏病影响因素分析中的应用
7
作者 邵莉 张宇琦 高文龙 《西南医科大学学报》 2024年第5期428-432,共5页
目的探讨贝叶斯Logistic回归模型在心脏病影响因素分析研究中的应用价值。方法数据资料来自2015年中国健康与养老追踪调查中的525例调查对象。利用OpenBUGS软件分别拟合了贝叶斯随机效应和固定效应的Logistic回归模型,并在两种模型中估... 目的探讨贝叶斯Logistic回归模型在心脏病影响因素分析研究中的应用价值。方法数据资料来自2015年中国健康与养老追踪调查中的525例调查对象。利用OpenBUGS软件分别拟合了贝叶斯随机效应和固定效应的Logistic回归模型,并在两种模型中估计各影响因素与因变量关系的优势比(OR)及95%可信区间(95%CI)。结果贝叶斯随机效应和固定效应的Logistic回归模型分析结果均显示,性别、高血压和糖尿病是心脏病患病率的影响因素。两个模型的收敛效果均较好,参数估计结果也相差较小,但随机效应模型的拟合效果略差于固定效应模型(随机效应模型:DIC=156.6,pD=11.96;固定效应模型:DIC=155.8,pD=7.79)。结论在贝叶斯Logistic回归模型中引入随机效应参数需根据具体情况而定,否则反而可能会降低模型的拟合效果。 展开更多
关键词 贝叶斯理论 logistic回归模型 中老年人 心脏病
下载PDF
基于多元Logistic模型与解释结构模型的乡村旅游可持续发展路径研究 被引量:1
8
作者 孙沙丹 杨佳成 覃志敏 《资源开发与市场》 CAS 2024年第8期1270-1280,共11页
在全面推进乡村振兴战略背景下,乡村旅游成为助推乡村经济高质量的有效路径。基于广西阳朔县23个景区的1005份问卷数据,采用多元Logistic回归模型和解释结构模型,探讨乡村旅游可持续发展因素及内在逻辑关系。研究发现:①旅游资源多样性... 在全面推进乡村振兴战略背景下,乡村旅游成为助推乡村经济高质量的有效路径。基于广西阳朔县23个景区的1005份问卷数据,采用多元Logistic回归模型和解释结构模型,探讨乡村旅游可持续发展因素及内在逻辑关系。研究发现:①旅游资源多样性、特色民俗文化、交通通达度、投资主体结构、管理者的战略视野和进取态度、国家和地方的政策环境都对乡村旅游的可持续性产生显著影响;②旅游资源的多样性和特色民俗文化是影响乡村旅游可持续发展的深层因素,交通通达度和投资主体结构为中层间接因素,而管理者的战略眼光和进取态度、国家及地方政策环境则是直接影响的表层因素;③乡村旅游的可持续发展是由客观环境因素和主观人为因素共同作用的复杂系统,在动态互动中形成了“旅游资源—发展条件—治理环境—乡村旅游的可持续发展”的传导关系。 展开更多
关键词 乡村旅游可持续发展 乡村振兴 影响因素 多元logistic回归模型 解释结构模型
下载PDF
Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed,Gansu Province,China 被引量:20
9
作者 DU Guo-liang ZHANG Yong-shuang +2 位作者 IQBAL Javed YANG Zhi-hua YAO Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第2期249-268,共20页
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence... Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups,(i) training dataset and(ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages,distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation. 展开更多
关键词 Landslide susceptibility Integrated model Information value method logistic regression Bailongjiang watershed
下载PDF
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
10
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
下载PDF
Application of a Novel Method for Machine Performance Degradation Assessment Based on Gaussian Mixture Model and Logistic Regression 被引量:3
11
作者 LIU Wenbin ZHONG Xin +2 位作者 LEE Jay LIAO Linxia ZHOU Min 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期879-884,共6页
The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data ... The currently prevalent machine performance degradation assessment techniques involve estimating a machine's current condition based upon the recognition of indications of failure features,which entail complete data collected in different conditions.However,failure data are always hard to acquire,thus making those techniques hard to be applied.In this paper,a novel method which does not need failure history data is introduced.Wavelet packet decomposition(WPD) is used to extract features from raw signals,principal component analysis(PCA) is utilized to reduce feature dimensions,and Gaussian mixture model(GMM) is then applied to approximate the feature space distributions.Single-channel confidence value(SCV) is calculated by the overlap between GMM of the monitoring condition and that of the normal condition,which can indicate the performance of single-channel.Furthermore,multi-channel confidence value(MCV),which can be deemed as the overall performance index of multi-channel,is calculated via logistic regression(LR) and that the task of decision-level sensor fusion is also completed.Both SCV and MCV can serve as the basis on which proactive maintenance measures can be taken,thus preventing machine breakdown.The method has been adopted to assess the performance of the turbine of a centrifugal compressor in a factory of Petro-China,and the result shows that it can effectively complete this task.The proposed method has engineering significance for machine performance degradation assessment. 展开更多
关键词 performance degradation assessment Gaussian mixture model logistic regression proactive maintenance sensor fusion
下载PDF
Logistic回归模型和XGBoost模型对急性缺血性脑卒中患者发生吞咽障碍的预测价值
12
作者 周升霞 张佳 +2 位作者 王祖萍 付丽萍 李萍 《新疆医科大学学报》 CAS 2024年第8期1179-1185,共7页
目的筛选危险因素构建急性缺血性脑卒中后吞咽障碍风险预测模型,对比XGBoost模型和Logistic回归模型的优劣性。方法选取2022年1-12月新疆医科大学第二附属医院神经内科573例急性缺血性脑卒中患者,按7∶3比例随机分为建模组(n=401)和验证... 目的筛选危险因素构建急性缺血性脑卒中后吞咽障碍风险预测模型,对比XGBoost模型和Logistic回归模型的优劣性。方法选取2022年1-12月新疆医科大学第二附属医院神经内科573例急性缺血性脑卒中患者,按7∶3比例随机分为建模组(n=401)和验证组(n=172)。筛选发生吞咽障碍的危险因素,以单因素分析有统计学意义的变量分别建立Logistic回归模型和XGBoost模型。在验证组数据集上使用十折交叉验证法进行内部验证,采用校准曲线、受试者工作特征曲线(ROC曲线)和决策曲线评价两种模型的预测效能。结果多因素Logistic回归分析结果显示,年龄、NIHSS评分、GCS评分、BI指数、脑干病变、构音障碍、失语症、咽反射(正常)是急性缺血性脑卒中后吞咽障碍的影响因素。XGBoost模型特征重要性排序前8位分别为年龄、BI指数、NIHSS评分、咽反射、TOAST分型、白蛋白、文化程度、营养评分。对比两种模型结果显示,XGBoost模型的准确性、精确度、敏感度、F1分值分别为0.849、0.830、0.754、0.790,表现优于Logistic回归模型。Logistic回归、XGBoost模型预测吞咽障碍的AUC值分别是0.894、0.925,两者AUC值比较,差异无统计学意义(P>0.05)。模型的校准曲线和临床决策曲线均显示XGBoost模型准确度和临床实用价值优于Logistic回归模型。结论XGBoost模型和Logistic回归模型均能有效预测急性缺血性脑卒中后吞咽障碍风险,XGBoost模型表现更优,可为临床早期预防急性缺血性脑卒中吞咽障碍提供参考。 展开更多
关键词 急性缺血性脑卒中 吞咽障碍 logistic回归 XGBoost模型
下载PDF
A Review of the Logistic Regression Model with Emphasis on Medical Research 被引量:7
13
作者 Ernest Yeboah Boateng Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2019年第4期190-207,共18页
This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on m... This study explored and reviewed the logistic regression (LR) model, a multivariable method for modeling the relationship between multiple independent variables and a categorical dependent variable, with emphasis on medical research. Thirty seven research articles published between 2000 and 2018 which employed logistic regression as the main statistical tool as well as six text books on logistic regression were reviewed. Logistic regression concepts such as odds, odds ratio, logit transformation, logistic curve, assumption, selecting dependent and independent variables, model fitting, reporting and interpreting were presented. Upon perusing the literature, considerable deficiencies were found in both the use and reporting of LR. For many studies, the ratio of the number of outcome events to predictor variables (events per variable) was sufficiently small to call into question the accuracy of the regression model. Also, most studies did not report on validation analysis, regression diagnostics or goodness-of-fit measures;measures which authenticate the robustness of the LR model. Here, we demonstrate a good example of the application of the LR model using data obtained on a cohort of pregnant women and the factors that influence their decision to opt for caesarean delivery or vaginal birth. It is recommended that researchers should be more rigorous and pay greater attention to guidelines concerning the use and reporting of LR models. 展开更多
关键词 logistic regression model Validation Analysis GOODNESS-OF-FIT Measures Odds RATIO LIKELIHOOD RATIO TEST Hosmer-Lemeshow TEST Wald Statistic MEDICAL RESEARCH
下载PDF
随机森林模型和Logistic回归模型预测非计划再手术发生风险的效能比较
14
作者 豆娟 王旭 +1 位作者 吴嘉越 赵英英 《广西医学》 CAS 2024年第4期501-505,共5页
目的比较随机森林模型和Logistic回归模型预测非计划再手术发生风险的效能。方法在手术麻醉系统中筛选一次住院期间申请2次手术的患者信息。提取所有非计划再次手术患者(n=219)作为研究组,对应科室的计划再次手术患者(n=14311)作为对照... 目的比较随机森林模型和Logistic回归模型预测非计划再手术发生风险的效能。方法在手术麻醉系统中筛选一次住院期间申请2次手术的患者信息。提取所有非计划再次手术患者(n=219)作为研究组,对应科室的计划再次手术患者(n=14311)作为对照组。运用随机森林模型和Logistic回归模型建立非计划再手术预测模型。采用受试者工作特征曲线下面积评价两种模型的预测效能。结果(1)Logistic回归分析结果显示,前次术中输血、罹患恶性肿瘤、合并疾病数量、前次手术切口愈合等级、前次手术级别、前次手术时长、前次手术切口类别是非计划再手术发生的影响因素(P<0.05)。Logistic回归预测模型的曲线下面积为0.922,灵敏度、特异度、准确率分别为92.59%、79.11%、79.28%。(2)随机森林模型特征变量的重要性排序结果显示,前次手术切口类别、前次术中输血、前次手术级别、前次手术切口愈合等级、合并疾病数量、罹患恶性肿瘤等变量的重要性更靠前。随机森林预测模型的曲线下面积为0.866,灵敏度、特异度、准确率分别为80.00%、93.33%、86.66%。Logistic回归预测模型曲线下面积大于随机森林预测模型,但差异无统计学意义(P>0.05)。结论综合使用Logistic回归模型和随机森林模型,并将二者分析结果互为补充,可从各个方面预测非计划再次手术的风险因素,能获得更好的预测效能。 展开更多
关键词 非计划再手术 随机森林模型 logistic回归模型 风险因素 预测模型
下载PDF
基于Logistic多因素分析的高龄产妇产后早期压力性尿失禁的影响因素分析 被引量:1
15
作者 张倩 黄艳 《牡丹江医学院学报》 2024年第1期64-68,共5页
目的 分析高龄产妇产后早期压力性尿失禁(stress urinary incontinence, SUI)的影响因素,为预防和治疗该病提供依据。方法 选择2019年6月至2022年6月间在安徽医科大学附属宿州医院妇产科进行盆底筛查的83例高龄产妇为研究对象,其中43例... 目的 分析高龄产妇产后早期压力性尿失禁(stress urinary incontinence, SUI)的影响因素,为预防和治疗该病提供依据。方法 选择2019年6月至2022年6月间在安徽医科大学附属宿州医院妇产科进行盆底筛查的83例高龄产妇为研究对象,其中43例为病例组(诊断为SUI),40例为对照组(无SUI)。使用一般资料调查表收集受试者基本情况与分娩资料,并进行单因素分析和二元Logistic多因素回归模型的多因素分析,评价模型的拟合优度。结果 单因素分析结果显示,病例组、对照组之间的分娩次数、分娩方式、胎儿是否足月、婴儿出生体重、孕前BMI、孕期体重增加、第二产程时长、是否进行盆底功能锻炼、妊娠合并症情况均存在统计学差异(P<0.05)。多因素分析结果显示,分娩次数、胎儿是否足月、孕期体重增加、第二产程时长、是否进行盆底功能锻炼、妊娠合并症均是影响高龄产妇产后早期SUI发生的独立影响因素(P<0.05)。模型系数的Omnibus检验结果表明,该模型总体有统计学意义(χ^(2)=78.846,P<0.001),内戈尔科R方=0.818(接近1),说明回归模型的拟合度较好。霍斯默-莱梅肖检验结果显示,P=0.682>0.05,说明模型拟合优度较高。结论 分娩次数、胎儿是否足月、孕期体重增加、第二产程时长、是否进行盆底功能锻炼、妊娠合并症均是影响高龄产妇产后早期SUI发生的独立影响因素,应该在临床中予以重视和处理。 展开更多
关键词 高龄产妇 产后早期 压力性尿失禁 logistic回归模型 影响因素
下载PDF
Regional Integrated Meteorological Forecasting and Warning Model for Geological Hazards Based on Logistic Regression 被引量:1
16
作者 XU Jing YANG Chi ZHANG Guoping 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期638-644,共7页
Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for model... Information model is adopted to integrate factors of various geosciences to estimate the susceptibility of geological hazards. Further combining the dynamic rainfall observations, Logistic regression is used for modeling the probabilities of geological hazard occurrences, upon which hierarchical warnings for rainfall-induced geological hazards are produced. The forecasting and warning model takes numerical precipitation forecasts on grid points as its dynamic input, forecasts the probabilities of geological hazard occurrences on the same grid, and translates the results into likelihoods in the form of a 5-level hierarchy. Validation of the model with observational data for the year 2004 shows that 80% of the geological hazards of the year have been identified as "likely enough to release warning messages". The model can satisfy the requirements of an operational warning system, thus is an effective way to improve the meteorological warnings for geological hazards. 展开更多
关键词 geological hazard information model logistic regression RAINFALL spatial analysis
下载PDF
基于logistic回归模型分析骨科手术部位感染的影响因素
17
作者 杨雪晶 徐建萍 +3 位作者 单永兰 陆晓梅 张亚军 王萍 《中国医药导报》 CAS 2024年第23期116-120,共5页
目的总结骨科手术部位感染现状,探讨骨科手术部位感染的影响因素。方法收集江苏省盐城市第三人民医院2022年1月至2023年12月骨科手术部位感染病例作为感染组,共41例,按照1∶1的比例,随机抽取同科室2022年1月至2023年12月年龄相近(±... 目的总结骨科手术部位感染现状,探讨骨科手术部位感染的影响因素。方法收集江苏省盐城市第三人民医院2022年1月至2023年12月骨科手术部位感染病例作为感染组,共41例,按照1∶1的比例,随机抽取同科室2022年1月至2023年12月年龄相近(±10岁)、性别相同未发生手术部位感染的41例病例作为非感染组,分析骨科手术部位感染病原菌分布情况并基于二分类logistic回归模型分析骨科手术部位感染的影响因素。结果本研究共纳入41例手术部位感染患者,术后1~3 d发生手术部位感染10例(24.39%),术后4~6 d发生手术部位感染12例(29.27%),术后7~9 d发生手术部位感染5例(12.20%),术后10~30 d发生手术部位感染10例(24.39%),术后31~90 d发生手术部位感染4例(9.76%)。感染组检出40株病原菌,主要为革兰氏阳性球菌(31株,77.50%),最常见的为金黄色葡萄球菌(19株,47.50%),其次为凝固酶阴性葡萄球菌(7株,17.50%)。两组糖尿病史、体重指数(BMI)、术前纤维蛋白原、手术持续时间、手术引流比较,差异有统计学意义(P<0.05)。logistic回归分析显示,患者BMI(OR=1.231,95%CI:1.049~1.445,P=0.011)是骨科手术部位感染的独立危险因素。BMI作为手术部位感染的独立危险因素,其临界值为25.37 kg/m2。结论骨科手术患者中,肥胖患者更易发生手术部位感染,建议进一步强化肥胖患者的围手术期管理,以减少手术部位感染的发生。 展开更多
关键词 骨科手术 手术部位感染 危险因素 logistic回归模型
下载PDF
基于Logistic回归模型和PCA模型的急性缺血性脑卒中发作影响因素分析
18
作者 沈惠文 陈淑良 +4 位作者 李桂茹 马春野 张立红 马得原 张策 《临床医学研究与实践》 2024年第3期9-12,共4页
目的应用Logistic回归模型和主成分分析(PCA)模型分析急性缺血性脑卒中(AIS)发作的影响因素。方法从大连医科大学附属第二医院医渡云科研大数据服务器系统提取2001年1月1日至2021年12月31日的数据,将医院病历系统收录的55620例AIS患者... 目的应用Logistic回归模型和主成分分析(PCA)模型分析急性缺血性脑卒中(AIS)发作的影响因素。方法从大连医科大学附属第二医院医渡云科研大数据服务器系统提取2001年1月1日至2021年12月31日的数据,将医院病历系统收录的55620例AIS患者纳入病例组,将筛选后的64134例在医院体检中心体检的人群纳入对照组。收集两组的临床资料,分析AIS发作的影响因素。结果多因素分析结果显示,年龄、性别、肌酐、白细胞计数、血红蛋白、红细胞计数、血小板计数、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、丙氨酸氨基转移酶(ALT)、总胆固醇(TC)、γ-谷氨酰转移酶(γ-GGT)水平及吸烟史、饮酒史、高血压、糖尿病、心梗、冠心病、动脉粥样硬化为AIS的影响因素(P<0.05);受试者工作特征(ROC)曲线下面积(AUC)为0.927。PCA提取8个主成分,既往病史、血脂水平风险比较大。结论既往病史及血脂水平是AIS发作的主要影响因素,有效控制原发疾病及血脂水平能够更好控制AIS发作。 展开更多
关键词 急性缺血性脑卒中 logistic回归模型 主成分分析
下载PDF
The assessment of the outliers of logistic regression model and its clinical application 被引量:1
19
作者 易东 许汝福 +1 位作者 张蔚 尹全焕 《Journal of Medical Colleges of PLA(China)》 CAS 1995年第1期61-62,66,共3页
On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the... On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia. 展开更多
关键词 OUTLIER logistic model leukemia LYMPHOBLASTIC prognosis regression analysis
下载PDF
Weighted Maximum Likelihood Technique for Logistic Regression
20
作者 Idriss Abdelmajid Idriss Weihu Cheng Yemane Hailu Fissuh 《Open Journal of Statistics》 2023年第6期803-821,共19页
In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for pr... In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared. 展开更多
关键词 logistic regression Clean model Robust Estimation Contaminated model Weighted Maximum Likelihood Technique
下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部