In our previous research,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the four properties,five flavors and channel tropism has been successfully established.However,co...In our previous research,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the four properties,five flavors and channel tropism has been successfully established.However,could Chinese herbal medicines efficacy also be applied to predict the hepatotoxicity of Chinese herbal medicines?Therefore,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on Chinese herbal medicines efficacy has been tentatively set up to study the correlations of hepatotoxic and nonhepatotoxic Chinese herbal medicines with efficacy by using a chi-square test for two-way unordered categorical data.Logistic regression prediction model was established and the accuracy of the prediction by this model was evaluated.It has been found that the hepatotoxicity and nonhepatotoxicity of Chinese herbal medicines were weakly related to the efficacy,and the coefficient was 0.295.There were 20 variables from Chinese herbal medicines efficacy analyzed with unconditional logistic regression,and 6 variables,rectifying Qi and relieving pain,clearing heat and disinhibiting dampness,invigorating blood and stopping pain,invigorating blood and relieving swelling,killing worms and relieving fright were chosen to establish the logistic regression prediction model,with the optimal cutoff value being 0.250.Dissipating cold and relieving pain(DCRP),clearing heat and disinhibiting dampness,invigorating blood and relieving pain(IBRP),invigorating blood and relieving swelling,killing worms,and relieving fright were the variables to affect the hepatotoxicity and the established logistic regression prediction model had predictive power for hepatotoxicity of Chinese herbal medicines to a certain degree.展开更多
BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems...BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems of college students.Developing a predictive model that can detect early warning signals of college students’mental health risks can help support early intervention and improve overall well-being.AIM To investigate college students’present psychological well-being,identify the contributing factors to its decline,and construct a predictive nomogram model.METHODS We analyzed the psychological health status of 40874 university students in selected universities in Hubei Province,China from March 1 to 15,2022,using online questionnaires and random sampling.Factors influencing their mental health were also analyzed using the logistic regression approach,and R4.2.3 software was employed to develop a nomogram model for risk prediction.RESULTS We randomly selected 918 valid data and found that 11.3%of college students had psychological problems.The results of the general data survey showed that the mental health problems of doctoral students were more prominent than those of junior college students,and the mental health of students from rural areas was more likely to be abnormal than that of urban students.In addition,students who had experienced significant life events and divorced parents were more likely to have an abnormal status.The abnormal group exhibited significantly higher Patient Health Questionnaire-9(PHQ-9)and Generalized Anxiety Disorder-7 scores than the healthy group,with these differences being statistically significant(P<0.05).The nomogram prediction model drawn by multivariate analysis includ-ed six predictors:The place of origin,whether they were single children,whether there were significant life events,parents’marital status,regular exercise,intimate friends,and the PHQ-9 score.The training set demonstrated an area under the receiver operating characteristic(ROC)curve(AUC)of 0.972[95%confidence interval(CI):0.947-0.997],a specificity of 0.888 and a sensitivity of 0.972.Similarly,the validation set had a ROC AUC of 0.979(95%CI:0.955-1.000),with a specificity of 0.942 and a sensitivity of 0.939.The H-L deviation test result was χ^(2)=32.476,P=0.000007,suggesting that the model calibration was good.CONCLUSION In this study,nearly 11.3%of contemporary college students had psychological problems,the risk factors include students from rural areas,divorced parents,non-single children,infrequent exercise,and significant life events.展开更多
Different models have been proposed in corporate finance literature for predicting the risk of firm's bankruptcy and insolvency. In spite of the large amount of empirical findings, significant issues are still unsolv...Different models have been proposed in corporate finance literature for predicting the risk of firm's bankruptcy and insolvency. In spite of the large amount of empirical findings, significant issues are still unsolved. In this paper, the authors developed dynamic statistical models for bankruptcy prediction of Italian firms in the industrial sector by using financial indicators. The model specification has been obtained via different variable selection techniques, and the predictive accuracy of the proposed default risk models has been evaluated at various horizons by means of different accuracy measures. The reached results give evidence that dynamic models have a better performance in any of the considered scenarios.展开更多
Ever since the appearance of"Implementation Measures for Suspending and Terminating the Listing of Loss-making Companies"in 2001,the delisting system has emerged.However,the proportion of delisted companies ...Ever since the appearance of"Implementation Measures for Suspending and Terminating the Listing of Loss-making Companies"in 2001,the delisting system has emerged.However,the proportion of delisted companies in China has never exceeded 1% each year.The number of delisted companies in the security market is far less than the number of companies with financial distress.The capital market lacks a good delisting system and investors lack risk identification capabilities.Financial risk is directly related to delisting risk.Therefore,an early warning model of financial distress prediction for China.s stock market can provide guidance to stakeholders such as listed companies and capital markets.This paper first explains the immature delisting system of China.s capital market and the overall high risk of listed companies.financial distress.Then,the paper further elaborates previous research on financial distress prediction model of listed companies and analyzes the advantages and disadvantages of different models.This paper chooses the Analytic Hierarchy Process(AHP)to screen out the main factors that affect the risk of financial distress.The main factors are included in Logistic regression model and BP neural network model for predicting financial distress of listed companies.The overall effect of two models are assessed and compared.Finally,this paper proposes policy implications according to empirical results.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagn...BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagnosis.At present,no specific serolo-gical indicator or method to predict HCC,early diagnosis of HCC remains a challenge,especially in China,where the situation is more severe.AIM To identify risk factors associated with HCC and establish a risk prediction model based on clinical characteristics and liver-related indicators.METHODS The clinical data of patients in the Affiliated Hospital of North Sichuan Medical College from 2016 to 2020 were collected,using a retrospective study method.The results of needle biopsy or surgical pathology were used as the grouping criteria for the experimental group and the control group in this study.Based on the time of admission,the cases were divided into training cohort(n=1739)and validation cohort(n=467).Using HCC as a dependent variable,the research indicators were incorporated into logistic univariate and multivariate analysis.An HCC risk prediction model,which was called NSMC-HCC model,was then established in training cohort and verified in validation cohort.RESULTS Logistic univariate analysis showed that,gender,age,alpha-fetoprotein,and protein induced by vitamin K absence or antagonist-II,gamma-glutamyl transferase,aspartate aminotransferase and hepatitis B surface antigen were risk factors for HCC,alanine aminotransferase,total bilirubin and total bile acid were protective factors for HCC.When the cut-off value of the NSMC-HCC model joint prediction was 0.22,the area under receiver operating characteristic curve(AUC)of NSMC-HCC model in HCC diagnosis was 0.960,with sensitivity 94.40%and specificity 95.35%in training cohort,and AUC was 0.966,with sensitivity 90.00%and specificity 94.20%in validation cohort.In early-stage HCC diagnosis,the AUC of NSMC-HCC model was 0.946,with sensitivity 85.93%and specificity 93.62%in training cohort,and AUC was 0.947,with sensitivity 89.10%and specificity 98.49%in validation cohort.CONCLUSION The newly NSMC-HCC model was an effective risk prediction model in HCC and early-stage HCC diagnosis.展开更多
This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the aff...This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.展开更多
基金This work was supported by the Project of National Natural Science Foundation of China(No.82074306)the Shenzhen Health and Family Planning System Research Project(No.SZBC2018007)the Project of Traditional Chinese Medicine Bureau of Guangdong Province(No.20201073).
文摘In our previous research,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on the four properties,five flavors and channel tropism has been successfully established.However,could Chinese herbal medicines efficacy also be applied to predict the hepatotoxicity of Chinese herbal medicines?Therefore,a logistic regression prediction model for hepatotoxicity of Chinese herbal medicines based on Chinese herbal medicines efficacy has been tentatively set up to study the correlations of hepatotoxic and nonhepatotoxic Chinese herbal medicines with efficacy by using a chi-square test for two-way unordered categorical data.Logistic regression prediction model was established and the accuracy of the prediction by this model was evaluated.It has been found that the hepatotoxicity and nonhepatotoxicity of Chinese herbal medicines were weakly related to the efficacy,and the coefficient was 0.295.There were 20 variables from Chinese herbal medicines efficacy analyzed with unconditional logistic regression,and 6 variables,rectifying Qi and relieving pain,clearing heat and disinhibiting dampness,invigorating blood and stopping pain,invigorating blood and relieving swelling,killing worms and relieving fright were chosen to establish the logistic regression prediction model,with the optimal cutoff value being 0.250.Dissipating cold and relieving pain(DCRP),clearing heat and disinhibiting dampness,invigorating blood and relieving pain(IBRP),invigorating blood and relieving swelling,killing worms,and relieving fright were the variables to affect the hepatotoxicity and the established logistic regression prediction model had predictive power for hepatotoxicity of Chinese herbal medicines to a certain degree.
基金Supported by Hubei Province Education Science Planning Project,No.2020GB132。
文摘BACKGROUND Due to academic pressure,social relations,and the change of adapting to independent life,college students are under high levels of pressure.Therefore,it is very important to study the mental health problems of college students.Developing a predictive model that can detect early warning signals of college students’mental health risks can help support early intervention and improve overall well-being.AIM To investigate college students’present psychological well-being,identify the contributing factors to its decline,and construct a predictive nomogram model.METHODS We analyzed the psychological health status of 40874 university students in selected universities in Hubei Province,China from March 1 to 15,2022,using online questionnaires and random sampling.Factors influencing their mental health were also analyzed using the logistic regression approach,and R4.2.3 software was employed to develop a nomogram model for risk prediction.RESULTS We randomly selected 918 valid data and found that 11.3%of college students had psychological problems.The results of the general data survey showed that the mental health problems of doctoral students were more prominent than those of junior college students,and the mental health of students from rural areas was more likely to be abnormal than that of urban students.In addition,students who had experienced significant life events and divorced parents were more likely to have an abnormal status.The abnormal group exhibited significantly higher Patient Health Questionnaire-9(PHQ-9)and Generalized Anxiety Disorder-7 scores than the healthy group,with these differences being statistically significant(P<0.05).The nomogram prediction model drawn by multivariate analysis includ-ed six predictors:The place of origin,whether they were single children,whether there were significant life events,parents’marital status,regular exercise,intimate friends,and the PHQ-9 score.The training set demonstrated an area under the receiver operating characteristic(ROC)curve(AUC)of 0.972[95%confidence interval(CI):0.947-0.997],a specificity of 0.888 and a sensitivity of 0.972.Similarly,the validation set had a ROC AUC of 0.979(95%CI:0.955-1.000),with a specificity of 0.942 and a sensitivity of 0.939.The H-L deviation test result was χ^(2)=32.476,P=0.000007,suggesting that the model calibration was good.CONCLUSION In this study,nearly 11.3%of contemporary college students had psychological problems,the risk factors include students from rural areas,divorced parents,non-single children,infrequent exercise,and significant life events.
文摘Different models have been proposed in corporate finance literature for predicting the risk of firm's bankruptcy and insolvency. In spite of the large amount of empirical findings, significant issues are still unsolved. In this paper, the authors developed dynamic statistical models for bankruptcy prediction of Italian firms in the industrial sector by using financial indicators. The model specification has been obtained via different variable selection techniques, and the predictive accuracy of the proposed default risk models has been evaluated at various horizons by means of different accuracy measures. The reached results give evidence that dynamic models have a better performance in any of the considered scenarios.
文摘Ever since the appearance of"Implementation Measures for Suspending and Terminating the Listing of Loss-making Companies"in 2001,the delisting system has emerged.However,the proportion of delisted companies in China has never exceeded 1% each year.The number of delisted companies in the security market is far less than the number of companies with financial distress.The capital market lacks a good delisting system and investors lack risk identification capabilities.Financial risk is directly related to delisting risk.Therefore,an early warning model of financial distress prediction for China.s stock market can provide guidance to stakeholders such as listed companies and capital markets.This paper first explains the immature delisting system of China.s capital market and the overall high risk of listed companies.financial distress.Then,the paper further elaborates previous research on financial distress prediction model of listed companies and analyzes the advantages and disadvantages of different models.This paper chooses the Analytic Hierarchy Process(AHP)to screen out the main factors that affect the risk of financial distress.The main factors are included in Logistic regression model and BP neural network model for predicting financial distress of listed companies.The overall effect of two models are assessed and compared.Finally,this paper proposes policy implications according to empirical results.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is difficult to diagnose with poor therapeutic effect,high recurrence rate and has a low survival rate.The survival of patients with HCC is closely related to the stage of diagnosis.At present,no specific serolo-gical indicator or method to predict HCC,early diagnosis of HCC remains a challenge,especially in China,where the situation is more severe.AIM To identify risk factors associated with HCC and establish a risk prediction model based on clinical characteristics and liver-related indicators.METHODS The clinical data of patients in the Affiliated Hospital of North Sichuan Medical College from 2016 to 2020 were collected,using a retrospective study method.The results of needle biopsy or surgical pathology were used as the grouping criteria for the experimental group and the control group in this study.Based on the time of admission,the cases were divided into training cohort(n=1739)and validation cohort(n=467).Using HCC as a dependent variable,the research indicators were incorporated into logistic univariate and multivariate analysis.An HCC risk prediction model,which was called NSMC-HCC model,was then established in training cohort and verified in validation cohort.RESULTS Logistic univariate analysis showed that,gender,age,alpha-fetoprotein,and protein induced by vitamin K absence or antagonist-II,gamma-glutamyl transferase,aspartate aminotransferase and hepatitis B surface antigen were risk factors for HCC,alanine aminotransferase,total bilirubin and total bile acid were protective factors for HCC.When the cut-off value of the NSMC-HCC model joint prediction was 0.22,the area under receiver operating characteristic curve(AUC)of NSMC-HCC model in HCC diagnosis was 0.960,with sensitivity 94.40%and specificity 95.35%in training cohort,and AUC was 0.966,with sensitivity 90.00%and specificity 94.20%in validation cohort.In early-stage HCC diagnosis,the AUC of NSMC-HCC model was 0.946,with sensitivity 85.93%and specificity 93.62%in training cohort,and AUC was 0.947,with sensitivity 89.10%and specificity 98.49%in validation cohort.CONCLUSION The newly NSMC-HCC model was an effective risk prediction model in HCC and early-stage HCC diagnosis.
文摘This is an erratum to an already published paper named“Establishment of a prediction model for prehospital return of spontaneous circulation in out-ofhospital patients with cardiac arrest”.We found errors in the affiliated institution of the authors.We apologize for our unintentional mistake.Please note,these changes do not affect our results.