The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three...The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three corollaries about the fixed points of logistic mappingare proposed and proved respectively. These theorem and corollaries provide a theoretical basis forchoosing parameter of chaotic sequences in chaotic secure communication and chaotic digitalwatermarking. And they are testified by simulation.展开更多
With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propo...With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.展开更多
Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety man...Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.展开更多
In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same si...In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same size,then QR factorization was performed on each block.Pseudorandom circular chain(PCC) generated by logistic mapping(LM) was applied to select the embedding blocks for enhancing the security of the scheme.The first column coefficients in Q matrix of chosen blocks were modified to embed watermarks without causing noticeable artifacts.Watermark extraction procedure was performed without the original cover image.The experimental results demonstrate that the watermarked images have good visual quality and this scheme is better than the existing techniques,especially when the image is attacked by cropping,noise pollution and so on.Analysis and discussion on robustness and security issues were also presented.展开更多
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the...In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed ac- cording to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.展开更多
In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make ...In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-imagedependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack(KPA) and the chosen plaintext attack(CPA). Moreover, experimental simulations and security analyses show that the proposed permutationdiffusion encryption scheme can achieve a satisfactory level of security.展开更多
In view of the occurrence of the coal and gas, outburst coal body separates in series of layer form, and tosses in a series of coal shell, and the morphological characteristics of the holes that formed in the coal lay...In view of the occurrence of the coal and gas, outburst coal body separates in series of layer form, and tosses in a series of coal shell, and the morphological characteristics of the holes that formed in the coal layers are very similar to some iterative morphological characteristics of the system state under highly nonlinear condition in chaos theory. Two kinds of morphology as well as their starting and end states are comparatively studied in this paper. The research results indicate that the outburst coal and rock system is in a chaotic state of lower nested hierarchy before outburst, and the process that lots of holes form owing to continuous outburst of a series of coal shells in a short time is in a rhythmical fast iterative stage of intermittent chaos state. And the state of the coal-gas system is in a stable equilibrium state after outburst. The behaviors of outburst occurrence, development and termination, based on the universal properties of various nonlinear mappings in describing complex problems, can be described by iterative operation in mathematics which uses the Logistic function f (x,μ)=μx(1-x) and the composite function F(3, x) = f(3)(x, μ) as kernel function. The primary equation of relative hole depth x and outburst parameter l in kernel function are given in this paper. The given results can deepen and enrich the understanding of physical essence of outburst.展开更多
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos...Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..展开更多
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provi...A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.展开更多
A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomizat...A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomization.The permutation is achieved by Baker map and the substitution by a key-related-to-plain-image algorithm based on the modified Logistic map.Modification of the Logistic map is developed to increase the space of the encryption key,and hence increase the security.The key of the encryption algorithm dependents on the plain image,and thus,the cipher image is sensitive to both the initial key and the plain image to resist known-plaintext and chosen plaintext attacks.The key space is large and hence the algorithm can effectively resist brute-force attacks.The proposed scheme is examined using different performance evaluation metrics and the results prove that the proposed scheme is highly secure,and it can effectively resist different attacks.展开更多
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami...Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.展开更多
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2...In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.展开更多
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied res...The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.展开更多
The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Research...The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way.Instead of the classical random walk,this paper proposes the quantum walk to achieve high image security.Classical random walk exhibits randomness due to the stochastic transitions between states,on the other hand,the quantum walk is more random and achieve randomness due to the superposition,and the interference of the wave functions.The proposed image encryption scheme is evaluated using extensive security metrics such as correlation coefficient,entropy,histogram,time complexity,number of pixels change rate and unified average intensity etc.All experimental results validate the proposed scheme,and it is concluded that the proposed scheme is highly secured,lightweight and computationally efficient.In the proposed scheme,the values of the correlation coefficient,entropy,mean square error(MSE),number of pixels change rate(NPCR),unified average change intensity(UACI)and contrast are 0.0069,7.9970,40.39,99.60%,33.47 and 10.4542 respectively.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(No.69772014).]
文摘The fixed points in logistic mapping digital-flow chaos strange attractor arestudied in detail. When k=n in logistic equation, there exist no more than 2n fixed points, whichare deduced and proved theoretically. Three corollaries about the fixed points of logistic mappingare proposed and proved respectively. These theorem and corollaries provide a theoretical basis forchoosing parameter of chaotic sequences in chaotic secure communication and chaotic digitalwatermarking. And they are testified by simulation.
基金Project supported by the Shandong Province Natural Science Foundation(Grant Nos.ZR2023MF089,R2023QF036,and ZR2021MF073)the Industry-University-Research Collaborative Innovation Fund Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant Nos.2021CXY-13 and 2021CXY-14)+2 种基金the Major Scientific and Technological Innovation Projects of Shandong Province(Grant No.2020CXGC010901)the Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023RCKY054)the Basic Research Projects of Science,Education and Industry Integration Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2023PX081)。
文摘With the rapid development of internet technology,security protection of information has become more and more prominent,especially information encryption.Considering the great advantages of chaotic encryption,we propose a 2D-lag complex logistic map with complex parameters(2D-LCLMCP)and corresponding encryption schemes.Firstly,we present the model of the 2D-LCLMCP and analyze its chaotic properties and system stability through fixed points,Lyapunov exponent,bifurcation diagram,phase diagram,etc.Secondly,a block cipher algorithm based on the 2D-LCLMCP is proposed,the plaintext data is preprocessed using a pseudorandom sequence generated by the 2D-LCLMCP.Based on the generalized Feistel cipher structure,a round function F is constructed using dynamic S-box and DNA encoding rules as the core of the block cipher algorithm.The generalized Feistel cipher structure consists of two F functions,four XOR operations,and one permutation operation per round.The symmetric dynamic round keys that change with the plaintext are generated by the 2D-LCLMCP.Finally,experimental simulation and performance analysis tests are conducted.The results show that the block cipher algorithm has low complexit,good diffusion and a large key space.When the block length is 64 bits,only six rounds of encryption are required to provide sufficient security and robustness against cryptographic attacks.
文摘Oil and gas pipelines are affected by many factors,such as pipe wall thinning and pipeline rupture.Accurate prediction of failure pressure of oil and gas pipelines can provide technical support for pipeline safety management.Aiming at the shortcomings of the BP Neural Network(BPNN)model,such as low learning efficiency,sensitivity to initial weights,and easy falling into a local optimal state,an Improved Sparrow Search Algorithm(ISSA)is adopted to optimize the initial weights and thresholds of BPNN,and an ISSA-BPNN failure pressure prediction model for corroded pipelines is established.Taking 61 sets of pipelines blasting test data as an example,the prediction model was built and predicted by MATLAB software,and compared with the BPNN model,GA-BPNN model,and SSA-BPNN model.The results show that the MAPE of the ISSA-BPNN model is 3.4177%,and the R2 is 0.9880,both of which are superior to its comparison model.Using the ISSA-BPNN model has high prediction accuracy and stability,and can provide support for pipeline inspection and maintenance.
基金Project(2007AA01Z241-2) supported by the National High-tech Research and Development Program of ChinaProject(2006XM002) supported by Beijing Jiaotong University Science Foundation,ChinaProject(0910KYZY55) supported by the Fundamental Research Funds for the Central University in China
文摘In order to protect copyright of digital images,a new robust digital image watermarking algorithm based on chaotic system and QR factorization was proposed.The host images were firstly divided into blocks with same size,then QR factorization was performed on each block.Pseudorandom circular chain(PCC) generated by logistic mapping(LM) was applied to select the embedding blocks for enhancing the security of the scheme.The first column coefficients in Q matrix of chosen blocks were modified to embed watermarks without causing noticeable artifacts.Watermark extraction procedure was performed without the original cover image.The experimental results demonstrate that the watermarked images have good visual quality and this scheme is better than the existing techniques,especially when the image is attacked by cropping,noise pollution and so on.Analysis and discussion on robustness and security issues were also presented.
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61370145,61173183,and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China(Grant No.20070141014)+2 种基金the Program for Liaoning Excellent Talents in University,China(Grant No.LR2012003)the National Natural Science Foundation of Liaoning Province,China(Grant No.20082165)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT12JB06)
文摘In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simul- taneously. The cipher-text image is divided into blocks and each block has k x k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed ac- cording to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61602124,61273021,11526057,and 11301091)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2016A030310333,2015A030313614,and 2015A030313620)+3 种基金the Science & Technology Planning Projects of Zhanjiang City,China(Grant Nos.2015B01098 and 2015B01051)the Project Foundation of Chongqing Municipal Education Committee of China(Grant No.KJ1500501)the Program for Scientific Research Start-up Funds of Guangdong Ocean University of Chinathe Special Funding Program for Excellent Young Scholars of Guangdong Ocean University of China
文摘In this paper, a novel image encryption algorithm is presented based on self-cited pixel summation. With the classical mechanism of permutation plus diffusion, a pixel summation of the plain image is employed to make a gravity influence on the pixel positions in the permutation stage. Then, for each pixel in every step of the diffusion stage, the pixel summation calculated from the permuted image is updated. The values from a chaotic sequence generated by an intertwining logistic map are selected by this summation. Consequently, the keystreams generated in both stages are dependent on both the plain image and the permuted image. Because of the sensitivity of the chaotic map to its initial conditions and the plain-imagedependent keystreams, any tiny change in the secret key or the plain image would lead to a significantly different cipher image. As a result, the proposed encryption algorithm is immune to the known plaintext attack(KPA) and the chosen plaintext attack(CPA). Moreover, experimental simulations and security analyses show that the proposed permutationdiffusion encryption scheme can achieve a satisfactory level of security.
文摘In view of the occurrence of the coal and gas, outburst coal body separates in series of layer form, and tosses in a series of coal shell, and the morphological characteristics of the holes that formed in the coal layers are very similar to some iterative morphological characteristics of the system state under highly nonlinear condition in chaos theory. Two kinds of morphology as well as their starting and end states are comparatively studied in this paper. The research results indicate that the outburst coal and rock system is in a chaotic state of lower nested hierarchy before outburst, and the process that lots of holes form owing to continuous outburst of a series of coal shells in a short time is in a rhythmical fast iterative stage of intermittent chaos state. And the state of the coal-gas system is in a stable equilibrium state after outburst. The behaviors of outburst occurrence, development and termination, based on the universal properties of various nonlinear mappings in describing complex problems, can be described by iterative operation in mathematics which uses the Logistic function f (x,μ)=μx(1-x) and the composite function F(3, x) = f(3)(x, μ) as kernel function. The primary equation of relative hole depth x and outburst parameter l in kernel function are given in this paper. The given results can deepen and enrich the understanding of physical essence of outburst.
文摘Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA01Z206)the Research Fund for Joint China-Canada Research and Development (R&D) Projects of The Ministry of Science and Technology,China (Grant No. 2010DFA11320)
文摘A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.
文摘A new chaotic image encryption scheme based on permutation and substitution in the Fourier domain is presented.Fractional Fourier Transform(FRFT)is used before the encryption scheme to get a large degree of randomization.The permutation is achieved by Baker map and the substitution by a key-related-to-plain-image algorithm based on the modified Logistic map.Modification of the Logistic map is developed to increase the space of the encryption key,and hence increase the security.The key of the encryption algorithm dependents on the plain image,and thus,the cipher image is sensitive to both the initial key and the plain image to resist known-plaintext and chosen plaintext attacks.The key space is large and hence the algorithm can effectively resist brute-force attacks.The proposed scheme is examined using different performance evaluation metrics and the results prove that the proposed scheme is highly secure,and it can effectively resist different attacks.
基金the National Natural Science Foundation of China(Grant No.61972103)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515011207)+3 种基金the Special Project in Key Area of General University in Guangdong Province of China(Grant No.2020ZDZX3064)the Characteristic Innovation Project of General University in Guangdong Province of China(Grant No.2022KTSCX051)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(Grant No.202263)the Foundation of Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea.
文摘Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.
基金This study is sponosored by National Natural Science Foundation of China.
文摘In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11202180,61273106,and 11171290)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK2010292 and BK2010293)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.10KJB510026)the National Training Programs of Innovation and Entrepreneurship for Undergraduates,China(Grant No.201210324009)the Training Programs of Practice and Innovation for Jiangsu College Students,China(Grant No.2012JSSPITP2378)
文摘The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influ- ences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincar6 map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map.
文摘The use of multimedia data sharing has drastically increased in the past few decades due to the revolutionary improvements in communication technologies such as the 4th generation(4G)and 5th generation(5G)etc.Researchers have proposed many image encryption algorithms based on the classical random walk and chaos theory for sharing an image in a secure way.Instead of the classical random walk,this paper proposes the quantum walk to achieve high image security.Classical random walk exhibits randomness due to the stochastic transitions between states,on the other hand,the quantum walk is more random and achieve randomness due to the superposition,and the interference of the wave functions.The proposed image encryption scheme is evaluated using extensive security metrics such as correlation coefficient,entropy,histogram,time complexity,number of pixels change rate and unified average intensity etc.All experimental results validate the proposed scheme,and it is concluded that the proposed scheme is highly secured,lightweight and computationally efficient.In the proposed scheme,the values of the correlation coefficient,entropy,mean square error(MSE),number of pixels change rate(NPCR),unified average change intensity(UACI)and contrast are 0.0069,7.9970,40.39,99.60%,33.47 and 10.4542 respectively.