The only two treatments effective for acute ischemic stroke are reperfusion therapies. Despite testing of hundreds of neuroprotective agents and treatments, tissue plasminogen activator (tPA), approved by the Food a...The only two treatments effective for acute ischemic stroke are reperfusion therapies. Despite testing of hundreds of neuroprotective agents and treatments, tissue plasminogen activator (tPA), approved by the Food and Drug Administration (FDA) in 1996, remains the only FDA-approved drug for the treatment of ischemic stroke. Recently,展开更多
Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river...Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.展开更多
文摘The only two treatments effective for acute ischemic stroke are reperfusion therapies. Despite testing of hundreds of neuroprotective agents and treatments, tissue plasminogen activator (tPA), approved by the Food and Drug Administration (FDA) in 1996, remains the only FDA-approved drug for the treatment of ischemic stroke. Recently,
基金Project supported by the National Natural Science Foundation of China(Grant No.52179056),the Fundamental Research Funds for the Central Universities(Grant No.QNTD202303).
文摘Large wood in rivers can lead to accumulations in the river channel, affecting local flow structures, aquatic habitats, and the river’s topography. This plays a crucial role in the ecological restoration of the river. This paper presents flow field measurements downstream of six types of logjams at different flow velocities using acoustic Doppler velocimetry (ADV) for artificially designed engineered logjams. The results indicate that the presence of logjams reduces the flow velocity and increases the turbulent kinetic energy in the wake region, and as the distance downstream increases, the flow velocity and turbulence intensity in the wake region gradually return to the upstream level. The minimum values of normalized flow velocity under different conditions are located in the region of the bottommost logs. The differences in normalized flow velocity at various flow rates are not significant. Jets are less likely to be generated in logjams with larger and more concentrated projection areas, but the strength of the jet is influenced by the physical structure of the logjam (projection area, gap ratio). The flow distribution behind the logjam is primarily influenced by the proportion of the projected area in different regions. Changes in the vertical physical structure of the logjam have minimal effect on the lateral flow distribution. Flow velocity in the gap area (b0) at the bottom of different logjams is influenced by their physical structure. The larger the overall blockage area of the logjams, the larger the flow velocity in the bottom gap area will be. The flow velocity in the bottom gap area of a densely placed logjam is mainly influenced by the gap ratio. The velocity of flow in the gap area can impact the initiation and deposition of sediment near the logjam. However, the internal structure complexity of the logjam does not significantly affect river energy dissipation and flow attenuation. This study broadens the applicability of certain theoretical models and explores the impact of logjams on river ecology and channel geomorphology. The findings can serve as a theoretical foundation for ecological restoration, timber management, and logjam construction in rivers.