期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection 被引量:2
1
作者 张新军 孙炳楠 项海帆 《Journal of Zhejiang University Science》 EI CSCD 2003年第1期21-27,共7页
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three dimensional nonlinear flutter analysis, in which the nonlinearities of structural dy... In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long span suspension bridges during erection. 展开更多
关键词 long span suspension bridges Nonlinear flutter analysis Erection stage
下载PDF
Acomparative study between China and U.S.on seismic design philosophy and practice of a long span arch bridge 被引量:2
2
作者 徐艳 George C Lee +1 位作者 范立础 胡世德 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2006年第1期61-69,共9页
This paper presents the first of a series of case studies on the seismic design of long span bridges (cable-stayed bridges, suspension bridges and arch bridges) under a cooperative research project on seismic behavi... This paper presents the first of a series of case studies on the seismic design of long span bridges (cable-stayed bridges, suspension bridges and arch bridges) under a cooperative research project on seismic behavior and design of highway bridges between the State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University and the Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo. The objective of this series of case studies is to examine the differences and similarities on the seismic design practice of long span bridges in China and the U.S., to identify research needs and to develop design guidelines beneficial to bridge engineers in both countries. Unlike short to medium span bridges, long span bridges are not included in most seismic design specifications, mainly because they are location dependent and structurally unique. In this paper, an available model of a steel tied half through arch bridge with a main span of 550m in China is discussed. Analysis is focused on comparisons of the seismic responses due to different ground motions. Seismic design criteria and seismic performance requirements for long span bridges in both countries were first introduced and compared, and then three near field earthquake records with large vertical components were selected as the excitations to examine the seismic behavior and seismic vulnerability of the bridge. Results show that (1) the selected near field ground motions cause larger responses to key components (critical sections) of the bridge (such as arch rib ends) with a maximum increase of more than twice those caused by the site specific ground motions; (2) piers, longitudinal girders and arch crowns are more vulnerable to vertical motions, especially their axial forces; and (3) large vertical components of near field ground motions may not significantly affect the bridge's internal forces provided that their peak acceleration spectra ordinates only appear at periods of less than 0.2s. However, they may have more influence on the longitudinal displacements of sliding bearings due to their large displacement spectra ordinates at the fundamental period of the bridge. 展开更多
关键词 long span arch bridge seismic design practise seismic vulnerability near field ground motion vertical motion
下载PDF
Non-stationary Buffeting Response Analysis of Long Span Suspension Bridge Under Strong Wind Loading
3
作者 Wenfeng Huang Kongqing Zou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第6期9-16,共8页
The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for n... The non-stationary buffeting response of long span suspension bridge in time domain under strong wind loading is computed. Modeling method for generating non-stationary fluctuating winds with probabilistic model for non-stationary strong wind fields is first presented. Non-stationary wind forces induced by strong winds on bridge deck and tower are then given a brief introduction. Finally,Non-stationary buffeting response of Pulite Bridge in China,a long span suspension bridge,is computed by using ANSYS software under four working conditions with different combination of time-varying mean wind and time-varying variance. The case study further confirms that it is necessity of considering non-stationary buffeting response for long span suspension bridge under strong wind loading,rather than only stationary buffeting response. 展开更多
关键词 NON-STATIONARY long span suspension bridge strong wind loading time domain analysisCLC number: TU311.3 Document code: A Article ID: 1005-9113(2016)06-0009-08
下载PDF
Wind-induced vibration control of bridges using liquid column damper 被引量:3
4
作者 薛素铎 高赞明 徐幼麟 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期271-280,共10页
The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for t... The potential application of tuned liquid column damper (TLCD) for suppressing wind-induced vibration of long span bridges is explored in this paper.By installing the TLCD in the bridge deck,a mathematical model for the bridge-TLCD system is established.The governing equations of the system are developed by considering all three displacement components of the deck in vertical,lateral,and torsional vibrations,in which the interactions between the bridge deck,the TLCD,the aeroelastic forces,and the aerodynamic forces are fully reflected.Both buffeting and flutter analyses are carried out.The buffeting analysis is performed through random vibration approach,and a critical flutter condition is identified from flutter analysis.A numerical example is presented to demonstrate the control effectiveness of the damper and it is shown that the TLCD can be an effective device for suppressing wind-induced vibration of long span bridges,either for reducing the buffeting response or increasing the critical flutter wind velocity of the bridge. 展开更多
关键词 long span bridge bridge deck wind-induced vibration vibration control FLUTTER BUFFETING tuned liquid column damper TLCD-bridge interaction mathematical model
下载PDF
Design concept of the Twin River Bridges in Chongqing,China
5
作者 Man-Chung TANG 《Frontiers of Structural and Civil Engineering》 SCIE EI 2011年第4期427-431,共5页
The Dongshuimen Bridge over the Yangtze River and the Qiansimen Bridge over the Jialing River in Chongqing,China are located at the tip of the Yuzhong Peninsula.Together,they are called the Twin River Bridges.Both are... The Dongshuimen Bridge over the Yangtze River and the Qiansimen Bridge over the Jialing River in Chongqing,China are located at the tip of the Yuzhong Peninsula.Together,they are called the Twin River Bridges.Both are double deck structures carrying four lanes of traffic on their upper decks and two transit tracks on their lower decks.The girders are steel truss structures with orthotropic plates and the towers are made of concrete.Aesthetics were carefully considered for the design of these bridges because of their visibility in the city and their neighboring landmarks. 展开更多
关键词 long span bridges partially cable-supported girder bridge cable-stayed bridge extradosed steel truss bridge aesthetics CHONGQING China
原文传递
Bridge Continuous Deformation Measurement Technology Based on Fiber Optic Gyro 被引量:4
6
作者 Weibing GAN Wenbin HU +3 位作者 Fang LIU Jianguang TANG Sheng LI Yan YANG 《Photonic Sensors》 SCIE EI CAS CSCD 2016年第1期71-77,共7页
Bridge is an important part of modem transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate th... Bridge is an important part of modem transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects. 展开更多
关键词 long span bridge continuous deformation measurement FOG structural safety
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部