This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches t...This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magni- tude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.展开更多
In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element metho...In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.展开更多
This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods ba...This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.展开更多
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering stru...In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.展开更多
基金National Natural Science Foundation of China (50278090).
文摘This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magni- tude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.
基金National Natural Science Foundation of China Under Grant No. 50408003National Scientifi c and Technical Supporting Programs Funded by Ministry of Science & Technology of China Under Grant No. 2006BAC13B01
文摘In this paper, near-fault strong ground motions caused by a surface rupture fault (SRF) and a buried fault (BF) are numerically simulated and compared by using a time-space-decoupled, explicit finite element method combined with a multi-transmitting formula (MTF) of an artificial boundary. Prior to the comparison, verification of the explicit element method and the MTF is conducted. The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane. The maximum final dislocation occurs on the fault upper line for the SRF; however, for the BE the maximum final dislocation is located on the fault central part. Meanwhile, the PGA, PGV and PGD of long period ground motions (≤ 1 Hz) generated by the SRF are much higher than those of the BF in the near-fault region. The peak value of the velocity pulse generated by the SRF is also higher than the BE Furthermore, it is found that in a very narrow region along the fault trace, ground motions caused by the SRF are much higher than by the BF. These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.
基金funded by National Natural Science Foundation of China (50808168)Ministry of Science and Technology of Weihai (2008087)Foundation of Harbin Institute of Technology at Weihai (HIT(Y)200801)
文摘This paper aimed to examine the site dependence and evaluate the methods for site analysis of far-source ground motions. This was achieved through the examination of frequency content estimated by different methods based on strong ground motions recorded at twelve far-source stations in Shandong province during the Wenchuan earthquake. The stations were located in sites with soil profiles ranging from code classes Ⅰ to Ⅲ. Approaches used included the Fourier amplitude spectrum (FAS), the earthquake response spectrum (ERS), the spectral ratio between the horizontal and the vertical components (H/V), the spectral ratio between the spectra at the site and at a reference site (SRRS), and coda wave analysis (CWA). Results showed that major periods of these ground motions obtained by FAS, ERS and H/V ratio methods were all evidently larger than site dominant periods; the periods were also different from each other and mainly reflected the frequency content of long period components. Prominent periods obtained by the SRRS approach neither illuminated the long period aspect nor efficiently determined site features of the motions. The CWA resulted in a period close to site period for stations with good quality recordings. The results obtained in this study will be useful for the evaluation of far-source effect in constructing seismic design spectra and in selecting methods for ground motion site analysis.
基金Federal Highway Administration(FHWA) Under Grant No.DTFH41-98900094
文摘In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.