期刊文献+
共找到174篇文章
< 1 2 9 >
每页显示 20 50 100
基于双重分解和双向长短时记忆网络的中长期负荷预测模型
1
作者 王继东 于俊源 孔祥玉 《电网技术》 EI CSCD 北大核心 2024年第8期3418-3426,I0121-I0126,共15页
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin... 针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。 展开更多
关键词 中长期负荷预测 二次分解 多尺度熵 奇异谱分析 双向长短时记忆网络 长序列处理
下载PDF
基于辅助信息与长短期偏好的序列推荐
2
作者 刘超 任梦瑶 冯禄华 《计算机应用研究》 CSCD 北大核心 2024年第9期2628-2634,共7页
为了解决序列推荐中的用户偏好漂移问题,以及更精确地捕捉用户动态偏好,提出了一种新型的序列推荐模型SILSSRec(side information and long-short term preferences based sequence recommendation)。该模型首先利用项目的类别和频次作... 为了解决序列推荐中的用户偏好漂移问题,以及更精确地捕捉用户动态偏好,提出了一种新型的序列推荐模型SILSSRec(side information and long-short term preferences based sequence recommendation)。该模型首先利用项目的类别和频次作为辅助信息,基于用户的历史交互序列,生成个性化用户嵌入表示。然后,通过历史交互和当前交互之间的时间间隔生成个性化时间间隔嵌入,并将此嵌入与项目特征嵌入融合,形成个性化时间嵌入表示。模型采用注意力机制和门控循环网络,从嵌入表示中提取用户的长期和短期偏好。此外,通过对比学习强化偏好的特征表达,并使用自适应聚合网络动态融合这两种偏好,形成用户的最终偏好表示。在8个公开数据集上的实验结果表明,SILSSRec在评估指标上优于现有的基线模型,其中AUC(area under curve)平均提高了3.82%、召回率平均提高了7.2%、精确率平均提高了0.3%。实验证明SILSSRec在不同场景下均有较好表现,有效缓解了偏好漂移问题,提升了推荐效果。 展开更多
关键词 序列推荐 辅助信息 注意力机制 长短期偏好 对比学习
下载PDF
时间感知的用户长短期兴趣特征分离推荐算法
3
作者 吴迪 杨利君 马文莉 《计算机工程与设计》 北大核心 2024年第5期1443-1450,共8页
针对传统推荐算法未充分考虑行为序列间的动态时间间隔、语义不规则以及用户长短期兴趣相互纠缠的问题,提出一种时间感知的用户长短期兴趣特征分离推荐算法。利用用户个性化时间聚合间隔感知和时间位置多头注意力捕获长期兴趣特征,采用... 针对传统推荐算法未充分考虑行为序列间的动态时间间隔、语义不规则以及用户长短期兴趣相互纠缠的问题,提出一种时间感知的用户长短期兴趣特征分离推荐算法。利用用户个性化时间聚合间隔感知和时间位置多头注意力捕获长期兴趣特征,采用动态时间间隔感知和潜在意图注意力的Time-LSTM捕获短期兴趣特征,提出长短期兴趣特征分离获取方法,分别独立捕获两种时间尺度的用户兴趣,通过注意力机制自适应融合长短期兴趣特征,提高用户兴趣特征捕获准确率。实验结果表明,该算法在预测精度指标AUC和GAUC上较对比算法均有提升,消融实验也进一步验证了该算法的必要性。 展开更多
关键词 个性化时间聚合间隔 动态时间间隔 长短期记忆网络 注意力机制 长短期兴趣 特征分离 推荐
下载PDF
嵌入多阶泰勒微分知识的多尺度注意力循环网络深度时空序列预测方法
4
作者 孙强 赵珂 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第6期2605-2618,共14页
融合先验物理知识的深度时空序列预测方法通常使用偏微分方程(PDE)进行建模,这种做法通常存在两大问题:(1)偏微分方程的近似精度低;(2)无法在循环网络中有效捕捉多种空间尺度的时空特征和时空序列的边缘相关空间信息。为此,该文提出了... 融合先验物理知识的深度时空序列预测方法通常使用偏微分方程(PDE)进行建模,这种做法通常存在两大问题:(1)偏微分方程的近似精度低;(2)无法在循环网络中有效捕捉多种空间尺度的时空特征和时空序列的边缘相关空间信息。为此,该文提出了融合泰勒微分的卷积循环神经网络(TDI-CRNN)。首先,为了提高高阶偏微分方程的近似精度并缓解偏微分方程应用的局限性,设计了一种多阶泰勒近似物理模块。该模块首先使用泰勒展开式对输入序列作微分逼近,再将不同阶数之间的微分卷积层使用微分系数耦合,最后动态调整泰勒展开结果的截断阶数与微分项数。其次,为了捕获循环网络隐藏状态的多种空间尺度特征并更好地捕捉时空序列的边缘相关空间信息,设计了一种多尺度注意力循环模块(MSARM),在该模块的多尺度卷积空间注意力UNet(即MCSA-UNet)的卷积层中使用了多尺度卷积和空间注意力机制,目的是关注时空序列的局部空间区域。在Moving MNIST,KTH以及CIKM数据集上开展了大量实验,Moving MNIST数据集的均方误差(MSE)指标下降到42.7,结构相似性指数(SSIM)提高到0.912;KTH数据集的SSIM和峰值信噪比(PSNR)分别提高到0.882和29.03;CIKM数据集上的临界成功指数(CSI)提高到0.515。最终的可视化和定量预测结果均验证了TDI-CRNN模型的合理性和有效性。 展开更多
关键词 时空序列预测 长短期记忆网络 知识引导 偏微分方程 泰勒展开式
下载PDF
融合局部最优划分长短期兴趣的序列推荐
5
作者 孙克雷 孙赛 《长春师范大学学报》 2024年第6期43-51,共9页
序列推荐中划分用户的长期和短期兴趣非常重要。现有的序列推荐模型多简单预设短期兴趣长度,但性能提升不明显。为了更好地建模用户长短期兴趣,本文提出了一种融合局部最优划分长短期兴趣的序列推荐模型,采用了一种局部最优短期兴趣长... 序列推荐中划分用户的长期和短期兴趣非常重要。现有的序列推荐模型多简单预设短期兴趣长度,但性能提升不明显。为了更好地建模用户长短期兴趣,本文提出了一种融合局部最优划分长短期兴趣的序列推荐模型,采用了一种局部最优短期兴趣长度算法,自动和自适应搜索最优短期兴趣长度,并设计了MLP层分别对长短期兴趣建模。在三个数据集上进行实验,结果表明运用该模型能够取得与最先进模型具有竞争力的性能。 展开更多
关键词 序列推荐 MLP 长短期兴趣 局部最优
下载PDF
基于多准则决策和深度神经网络的电子商务推荐系统
6
作者 韩晓路 周湘贞 《贵阳学院学报(自然科学版)》 2024年第3期69-73,91,共6页
推荐系统在电子商务门户中发挥着重要作用。现有推荐算法通常基于单个评分标准进行推荐商品排序,未考虑到从不同标准的用户偏好上对用户和商品特征进行综合建模。为此,提出了基于多准则决策(MCD)和深度神经网络(DNN)的电商产品推荐系统... 推荐系统在电子商务门户中发挥着重要作用。现有推荐算法通常基于单个评分标准进行推荐商品排序,未考虑到从不同标准的用户偏好上对用户和商品特征进行综合建模。为此,提出了基于多准则决策(MCD)和深度神经网络(DNN)的电商产品推荐系统。首先,设计上下文感知的DNN模型,从不同标准出发进行评分预测,并通过聚合函数得到综合评分预测值。其后,通过结合残差卷积神经网络(CNN)和双向长短时记忆(Bi-LSTM)的混合模型,基于用户评论预测用户对商品的情感倾向。最后,将评分预测与情感倾向结合,实现准确的商品推荐。实验结果表明,所提方法在亚马逊电商产品数据集上进行商品推荐的平均绝对误差(MAE)和均方根误差(RMSE)分别为0.953和1.129,优于其他比较方法,证明在推荐系统中结合MCD和情感分析,能够有效提高推荐系统性能。 展开更多
关键词 电子商务 推荐系统 多准则决策 深度神经网络 情感分析 双向长短时记忆
下载PDF
较短的长序列时间序列预测模型 被引量:1
7
作者 徐泽鑫 杨磊 李康顺 《计算机应用》 CSCD 北大核心 2024年第6期1824-1831,共8页
针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Un... 针对现有的研究大多将短序列时间序列预测和长序列时间序列预测分开研究而导致模型在较短的长序列时序预测时精度较低的问题,提出一种较短的长序列时间序列预测模型(SLTSFM)。首先,利用卷积神经网络(CNN)和PBUSM(Probsparse Based on Uniform Selection Mechanism)自注意力机制搭建一个序列到序列(Seq2Seq)结构,用于提取长序列输入的特征;其次,设计“远轻近重”策略将多个短序列输入特征提取能力较强的长短时记忆(LSTM)模块提取的各时段数据特征进行重分配;最后,用重分配的特征增强提取的长序列输入特征,提高预测精度并实现时序预测。利用4个公开的时间序列数据集验证模型的有效性。实验结果表明,与综合表现次优的对比模型循环门单元(GRU)相比,SLTSFM的平均绝对误差(MAE)指标在4个数据集上的单变量时序预测分别减小了61.54%、13.48%、0.92%和19.58%,多变量时序预测分别减小了17.01%、18.13%、3.24%和6.73%。由此可见SLTSFM在提升较短的长序列时序预测精度方面的有效性。 展开更多
关键词 较短的长序列时间序列预测 序列到序列 长短期记忆 自注意力机制 特征重分配
下载PDF
Storm分布式计算框架下基于知识图谱的快速学习资源推荐 被引量:2
8
作者 刘莹 杨淑萍 张治国 《南京邮电大学学报(自然科学版)》 北大核心 2024年第3期93-99,共7页
针对在线学习资源推荐存在精度较低或实时性较差的问题,采用知识图谱进行用户及资源的知识表示,并采用长短时间记忆网络对用户资源特征差进行优化,从而将与用户特征差最小的资源推送给用户。首先,在获得在线学习记录样本后,利用知识图... 针对在线学习资源推荐存在精度较低或实时性较差的问题,采用知识图谱进行用户及资源的知识表示,并采用长短时间记忆网络对用户资源特征差进行优化,从而将与用户特征差最小的资源推送给用户。首先,在获得在线学习记录样本后,利用知识图谱进行实体特征关系的知识表示,并借助Storm分布式框架生成知识图谱中头尾实体及关系特征向量。接着,建立用户-资源实体的最小特征差目标函数,并采用长短时间记忆网络对最小特征差目标函数进行优化。最后,通过Storm分布式平台进行长短时间记忆网络的参数求解,从而快速生成稳定的相关资源推荐模型。实验结果表明,在Storm分布式框架下采用知识图谱和长短时间记忆网络实现在线资源推荐,可获得较高准确率及运行效率,在应对大规模资源的实时推荐方面具有较强的适应度。 展开更多
关键词 资源推荐 知识图谱 Storm框架 长短时间记忆 TransD模型
下载PDF
基于聚合二次模态分解及Informer的短期负荷预测 被引量:3
9
作者 石卓见 冉启武 徐福聪 《电网技术》 EI CSCD 北大核心 2024年第6期2574-2583,I0087-I0091,共15页
针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive ... 针对区域级负荷的非平稳性及长序列预测精度低的问题,该文提出了一种基于聚合二次模态分解及Informer的短期负荷预测方法。首先,运用改进完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)对负荷序列进行初步分解,削弱原始序列的随机性与波动性;其次,根据子序列的样本熵计算结果进行聚合,并通过比较不同的聚合方式选出最优重构方案;然后,利用变分模态分解对高复杂度的合作模态函数进行二次分解;充分考虑到电价、气象等因素对负荷的影响,采用随机森林(random forest,RF)算法进行相关性分析,从而为每个子序列构建不同的高耦合度特征矩阵并输入Informer进行建模,并通过其多层次编码及稀疏多头自注意力机制等方式提高对负荷序列的预测效率;最后采用巴塞罗那区域级负荷数据集进行实例验证,结果显示所提框架有效解决了模态分解过程中的模态混叠以及高频分量问题,并且其长序列预测均方根误差相比其他经典深度学习模型最高降低了65.28%。 展开更多
关键词 短期负荷预测 二次分解 样本熵 聚合方式比较 INFORMER 随机森林算法 长序列预测
下载PDF
基于改进狼群算法优化LSTM网络的舆情演化预测 被引量:1
10
作者 李若晨 肖人彬 《复杂系统与复杂性科学》 CAS CSCD 北大核心 2024年第1期1-11,共11页
为提高预测舆情演化趋势的能力,提出了一种基于改进狼群算法(IWPA)优化长短期记忆(LSTM)神经网络的舆情演化预测模型。采用Halton Sequence进行初始化,提高种群多样性;设计步长因子进行高斯-正弦扰动变换,提高狼群探索开发能力;结合鲸... 为提高预测舆情演化趋势的能力,提出了一种基于改进狼群算法(IWPA)优化长短期记忆(LSTM)神经网络的舆情演化预测模型。采用Halton Sequence进行初始化,提高种群多样性;设计步长因子进行高斯-正弦扰动变换,提高狼群探索开发能力;结合鲸鱼优化算法中的螺旋改进围攻机制,增强狼群的局部搜索能力;引入记忆力机制,使用双向记忆种群增加狼群协同合作能力,将改进后的狼群算法应用到LSTM神经网络的超参数预测。采用“新冠疫情”和“食品安全”等关键词作为实例,证明了IWPA-LSTM神经网络舆情演化预测模型具有良好的准确性和普适性,适用于多种舆情演化的预测。 展开更多
关键词 舆情演化预测 狼群算法 LSTM神经网络 Halton sequence 正弦扰动 鲸鱼螺旋围攻机制 记忆力机制
下载PDF
基于知识图谱的长短期序列推荐算法
11
作者 胡泽宇 肖玉芝 +1 位作者 霍宣蓉 黄涛 《南京邮电大学学报(自然科学版)》 北大核心 2024年第4期122-130,共9页
现有的部分序列推荐算法较少关注用户短期兴趣随时间变化的问题,从而导致推荐的精度不够理想,且在用户兴趣转变的可解释性上有待提高。据此,提出了一种基于知识图谱的长短期序列推荐算法(KGLSR)。将交互历史划分为长期和短期行为序列后... 现有的部分序列推荐算法较少关注用户短期兴趣随时间变化的问题,从而导致推荐的精度不够理想,且在用户兴趣转变的可解释性上有待提高。据此,提出了一种基于知识图谱的长短期序列推荐算法(KGLSR)。将交互历史划分为长期和短期行为序列后,结合卷积神经网络与注意力机制进行长期兴趣的特征重构,并引入知识图谱与图注意力更新用户的短期偏好,最后实现自适应聚合。经验证,该模型在3类真实场景下的数据集中以HR、MRR和NDCG为评价指标的表现均优于对比实验中的主流基线模型。 展开更多
关键词 序列推荐 知识图谱 长短期兴趣 图注意力网络
下载PDF
融合热点与长短期兴趣的图神经网络课程推荐模型
12
作者 刘源 董永权 +2 位作者 陈成 贾瑞 印婵 《计算机科学与探索》 CSCD 北大核心 2024年第6期1600-1612,共13页
近年来大规模在线开放课程(MOOCs)平台为用户提供了海量的学习资源,亟需一种有效的个性化课程推荐方法帮助用户解决信息过载问题。现有的课程推荐方法忽略了课程间的时序性且无法较好地捕获课程间的长距离依赖关系,同时面临用户学习兴... 近年来大规模在线开放课程(MOOCs)平台为用户提供了海量的学习资源,亟需一种有效的个性化课程推荐方法帮助用户解决信息过载问题。现有的课程推荐方法忽略了课程间的时序性且无法较好地捕获课程间的长距离依赖关系,同时面临用户学习兴趣表示和冷启动两个关键问题。基于此,提出一种融合热点与长短期兴趣的图神经网络课程推荐模型(GHLS4CR)。该模型设计无环时序图和无环快捷图两种会话图构建方法来缓解现有方法存在的时序信息丢失和不善于捕获长距离依赖的问题;将用户长短期兴趣进行图级表示,并与热门课程信息进行融合实现个性化推荐,同时缓解冷启动问题。通过在学堂在线(XuetangX)公开数据集MOOCCourse上的大量实验表明,GHLS4CR在个性化课程推荐领域优于FISSA和LESSR等主流推荐模型。与次好的LESSR模型相比,Recall@5提高了13.28%,MRR@5提高了15.50%。 展开更多
关键词 课程推荐 基于会话的推荐 图神经网络 长短期兴趣 冷启动
下载PDF
基于用户长短期偏好的个性化推荐
13
作者 叶榕 邵剑飞 邵建龙 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期615-628,共14页
针对现有序列推荐模型忽略用户的长期偏好和短期偏好,导致推荐模型不能充分发挥作用,推荐效果不佳的问题,提出一种基于用户长短期偏好的个性化推荐模型.首先,针对长期偏好序列长且不连续的特点,采用BERT(bidirectional encoder represen... 针对现有序列推荐模型忽略用户的长期偏好和短期偏好,导致推荐模型不能充分发挥作用,推荐效果不佳的问题,提出一种基于用户长短期偏好的个性化推荐模型.首先,针对长期偏好序列长且不连续的特点,采用BERT(bidirectional encoder representations from transformers)对长期偏好建模;针对短期偏好序列短且与用户交互的间隔时间较短,具有易变性,采用垂直水平卷积网络对短期偏好建模;在得到用户的长期偏好和短期偏好后,利用激活函数进行动态建模,然后利用门控循环网络对长短期偏好进行平衡.其次,针对用户在日常交互中的误碰行为,采用稀疏注意力网络进行建模,在对长短期偏好建模前使用稀疏注意力网络进行用户行为序列处理;用户特征偏好对推荐结果也会有影响,使用带有偏置编码的多头注意力机制对用户特征进行提取.最后,将各部分得到的结果输入到全连接层得到最后的输出结果.为验证本文模型的可行性,在数据集Yelp和MovieLens-1M上进行实验,实验结果表明该模型优于其他基线模型. 展开更多
关键词 序列推荐 长期偏好 短期偏好 稀疏注意力网络 垂直水平卷积网络
下载PDF
基于时序序列分解和IBAS LSTM的滑坡数据预测模型
14
作者 荆严飞 党建武 +1 位作者 王阳萍 岳彪 《兰州交通大学学报》 CAS 2024年第2期58-67,共10页
针对传统静态机器学习模型在周期项位移预测中的缺陷和动态神经网络超参数人工选择困难的问题,在时序序列分解的基础上,提出一种新的滑坡预测耦合模型。首先,用最大相关最小冗余算法对周期项位移筛选合适的环境特征,作为长短期记忆人工... 针对传统静态机器学习模型在周期项位移预测中的缺陷和动态神经网络超参数人工选择困难的问题,在时序序列分解的基础上,提出一种新的滑坡预测耦合模型。首先,用最大相关最小冗余算法对周期项位移筛选合适的环境特征,作为长短期记忆人工神经网络的输入。然后,在天牛须搜索算法搜索过程中引入反馈机制,以避免原算法中出现远离最优解的问题;在算法迭代过程中将固定的递减因子改为动态递减因子,以提升前期全局和后期局部的寻优能力;利用改进的天牛须搜索算法对长短期记忆人工神经网络超参数进行寻优,以获得最佳的网络参数组合。最后,重构趋势项和周期项预测结果,得到最终预测位移。以发耳滑坡为例进行分析,结果表明:相较于其他方法,所提模型在平均绝对误差、均方根误差以及拟合度等方面更具优势。 展开更多
关键词 动态神经网络模型 时序序列分解 灰色模型 长短期记忆人工神经网络 天牛须搜索算法
下载PDF
考虑未来功率需求的锂离子电池SOC多步预测
15
作者 陈瑞 陈俐 《电源技术》 CAS 北大核心 2024年第10期2013-2021,共9页
为提高荷电状态(SOC)多步预测精度,提出了基于长短期记忆(LSTM)的编码器-解码器用于SOC多步预测,在输入中考虑未来电池功率序列,在编码器和解码器上依次提取历史特征序列和未来功率序列的时间依赖信息。以某全电动飞机用锂离子电池包为... 为提高荷电状态(SOC)多步预测精度,提出了基于长短期记忆(LSTM)的编码器-解码器用于SOC多步预测,在输入中考虑未来电池功率序列,在编码器和解码器上依次提取历史特征序列和未来功率序列的时间依赖信息。以某全电动飞机用锂离子电池包为应用案例,采集电池实验平台测试数据构建训练集和测试集,通过五折交叉验证选择模型的超参数。预测时长为300 s时,平均绝对误差、最大绝对误差和均方根误差分别为0.4231%、2.4847%和0.6450%。与没有输入未来功率的SOC多步预测模型进行对比,验证了在输入中增加未来功率能有效提高预测精度,与同样输入所有特征的多层感知机进行对比,验证了LSTM编码器-解码器具有更好的预测性能。 展开更多
关键词 锂离子电池 SOC多步预测 长短期记忆 编码器-解码器 未来功率序列
下载PDF
基于用户长短期历史的多兴趣召回算法
16
作者 张旭 欧中洪 宋美娜 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期12-17,共6页
随着互联网时代的高速发展,用户面临信息过载问题,推荐系统应运而生.推荐系统一般分两个阶段,即推荐召回和推荐排序,推荐召回阶段主要用来筛选出一部分候选集以减小推荐排序阶段的计算压力.多兴趣个性化推荐系统对于每一个用户,算法能... 随着互联网时代的高速发展,用户面临信息过载问题,推荐系统应运而生.推荐系统一般分两个阶段,即推荐召回和推荐排序,推荐召回阶段主要用来筛选出一部分候选集以减小推荐排序阶段的计算压力.多兴趣个性化推荐系统对于每一个用户,算法能学习到用户的多种不同的兴趣偏好,然而目前的多兴趣召回算法只考虑了用户短期历史纪录,忽视了用户长期历史纪录中蕴含的丰富信息.针对这一问题,提出一种基于用户长短期历史的多兴趣召回算法,通过不同的神经网络模型结构分别建模用户长短期兴趣偏好,并通过门控融合网络融合用户长短期兴趣偏好,最终得到用户的多个兴趣偏好,实现了个性化推荐召回.在两个公开数据集上的实验证明了模型的有效性. 展开更多
关键词 推荐系统 序列推荐 多兴趣 长短期历史 图神经网络
下载PDF
基于XLNET模型的开阳磷矿成矿条件相关地质实体识别与应用
17
作者 彭彬 田宜平 +2 位作者 曾斌 吴雪超 吴文明 《地质科技通报》 CAS CSCD 北大核心 2024年第4期224-234,共11页
随着磷矿找矿难度越来越大,地质勘探成果报告也愈来愈多,通过人工识别海量文档中与磷矿成矿相关地质信息耗时低效,无法满足知识共享传播和地质报告智能管理的需求。为快速获得磷矿地质文档报告中隐藏的成矿地质知识,基于XLNET模型建立... 随着磷矿找矿难度越来越大,地质勘探成果报告也愈来愈多,通过人工识别海量文档中与磷矿成矿相关地质信息耗时低效,无法满足知识共享传播和地质报告智能管理的需求。为快速获得磷矿地质文档报告中隐藏的成矿地质知识,基于XLNET模型建立了磷矿成矿地质实体自动识别的方法。首先对实体进行BIO标注建立地质实体字典,利用XLNET作为底层预处理模型学习句子双向语义;然后使用BILSTM-Attention-CRF模型实现文本多标签的智能分类;最后通过定位磷矿实体在报告中的分布位置大致推测该处磷矿成矿条件和成矿模式。将该模型与其余3种模型比较得出结果,该模型识别的准确率(P)、召回率(R)及F1值都接近了90%,较前3种模型分别调高了2%,5%,6%。该研究为开阳磷矿地质研究人员提供了更加高效的地质实体自动识别的方法。 展开更多
关键词 地质实体识别 XLNET-BILSTM-Attention-CRF 磷矿成矿模式 预训练模型 序列标注
下载PDF
融合知识图谱与用户长短期兴趣的新闻推荐
18
作者 陈志浩 赖钿钿 +1 位作者 古万荣 李西明 《软件导刊》 2024年第7期115-125,共11页
针对现有新闻推荐算法研究中忽略了新闻之间知识层面的联系和用户短期偏好等问题,提出一种融合知识图谱和用户长短期兴趣的新闻推荐模型。模型由新闻语义编码器、用户兴趣编码器和点击预测器3部分组成,在新闻语义编码器中,除使用新闻本... 针对现有新闻推荐算法研究中忽略了新闻之间知识层面的联系和用户短期偏好等问题,提出一种融合知识图谱和用户长短期兴趣的新闻推荐模型。模型由新闻语义编码器、用户兴趣编码器和点击预测器3部分组成,在新闻语义编码器中,除使用新闻本身的标题、简介、类别信息以学习新闻语义表示外,还利用新闻标题与简介中提及的知识实体并结合WikiData知识图谱构建知识子图,从知识子图中学习新闻之间潜在知识层面的联系。在用户兴趣编码器中,使用注意力机制从用户历史点击新闻序列中提取用户的长期兴趣,并采用GRU网络学习用户的短期偏好,然后结合用户的长期兴趣和短期偏好构建用户综合兴趣表示。在MIND-small数据集上分别进行了对比实验和消融实验,在反映模型准确率的AUC指标上,KGLS模型比最先进的基线模型提高了2.92%。 展开更多
关键词 推荐系统 新闻推荐 知识图谱 长短期兴趣 GRU网络
下载PDF
Reinforcement Learning-Based Dynamic Order Recommendation for On-Demand Food Delivery
19
作者 Xing Wang Ling Wang +2 位作者 Chenxin Dong Hao Ren Ke Xing 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期356-367,共12页
On-demand food delivery(OFD)is gaining more and more popularity in modern society.As a kernel order assignment manner in OFD scenario,order recommendation directly influences the delivery efficiency of the platform an... On-demand food delivery(OFD)is gaining more and more popularity in modern society.As a kernel order assignment manner in OFD scenario,order recommendation directly influences the delivery efficiency of the platform and the delivery experience of riders.This paper addresses the dynamism of the order recommendation problem and proposes a reinforcement learning solution method.An actor-critic network based on long short term memory(LSTM)unit is designed to deal with the order-grabbing conflict between different riders.Besides,three rider sequencing rules are accordingly proposed to match different time steps of the LSTM unit with different riders.To test the performance of the proposed method,extensive experiments are conducted based on real data from Meituan delivery platform.The results demonstrate that the proposed reinforcement learning based order recommendation method can significantly increase the number of grabbed orders and reduce the number of order-grabbing conflicts,resulting in better delivery efficiency and experience for the platform and riders. 展开更多
关键词 on-demand food delivery order recommendation reinforcement learning actor-critic network long short term memory
原文传递
基于LSTM与深度矩阵分解的推荐融合模型
20
作者 丁伟健 卢敏 +1 位作者 杨忠明 陈丽萍 《软件导刊》 2024年第9期41-47,共7页
针对现实推荐场景中多数推荐算法忽略用户偏好动态变化的时效因素,导致模型性能受限的问题,提出一种基于LSTM和深度矩阵分解的推荐融合模型LFDMF。该模型通过广义矩阵分解学习用户和项目间非线性低阶特征,运用多层感知机学习用户和项目... 针对现实推荐场景中多数推荐算法忽略用户偏好动态变化的时效因素,导致模型性能受限的问题,提出一种基于LSTM和深度矩阵分解的推荐融合模型LFDMF。该模型通过广义矩阵分解学习用户和项目间非线性低阶特征,运用多层感知机学习用户和项目间非线性高阶特征,获取用户长期动态偏好,利用LSTM对时间序列的强拟合能力,获取用户短期动态偏好。为验证LFDMF模型的有效性和可行性,在公开数据集MovieLens-1M和Pinterest上进行对比实验。仿真实验表明,LFDMF模型的HR@10和NDCG@10指标相比传统MF算法分别提升了0.1034和0.1322、0.1181和0.1018;相比DMF模型分别提升了0.0228和0.0323、0.0169和0.0135,推荐性能显著提升。 展开更多
关键词 推荐融合 广义矩阵分解 多层感知机 跳跃连接 长短期记忆网络
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部