Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules d...Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.展开更多
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to l...A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.展开更多
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a...A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.展开更多
This article studies a semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source in an infinitely long cylinder. We study the effects of the strength of the source on quenching. Cr...This article studies a semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source in an infinitely long cylinder. We study the effects of the strength of the source on quenching. Criteria for global existence of the solution and for quenching are investigated.展开更多
Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for the...Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC.展开更多
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When ...The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.展开更多
Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspe...Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspect ratio of 331.The cylinder was towed by a carriage with the velocity up to 1.5 m/s,with the Reynolds number varying from 2500 to 38000.Three different weights were used to provide the initial tension.Dual resonance means that resonance occurs simultaneously in both the cross-flow(CF)and in-line(IL)directions.The experiments were conducted in two stages.At the first stage,dual-resonant dynamic features of the cylinder subjected to vortex-induced excitation were investigated.The features of CF and IL vibration amplitude,motion orbits,phase angle differences,dominant frequencies and mode order numbers are presented.At the second stage of the experiments,particular emphasis was placed on non-resonant dynamic features.The variation of multi-mode modal displacement amplitudes was investigated in detail.展开更多
基金Supported by the Italian Ministry of Defense-Segredifesa,in collaboration with Fincantieri under Grant of the ASAMS(Aspetti specialistici e approccio metodologico per progettazione di sottomarini di ultima generazione)project(2019-2022).
文摘Goal based and limit state design is nowadays a well-established approach in many engineering fields.Ship construction rules started introducing such concepts since early 2000.However,classification societies’rules do not provide hints on how to verify limit states and to determine the structural layout of submerged thin-walled stiffened cylinders,whose most prominent examples are submarines.Rather,they generally offer guidance and prescriptive formulations to assess shell plating and stiffening members.Such marine structures are studied,designed and built up to carry payloads below the sea surface.In the concept-design stage,the maximum operating depth is the governing hull scantling parameter.Main dimensions are determined based on the analysis of operational requirements.This study proposes a practical conceptdesign approach for conceptual submarine design,aimed at obtaining hull structures that maximize the payload capacity in terms of available internal volume by suitably adjusting structural layout and stiffening members’scantling,duly accounting for robustness and construction constraints as well as practical fabrication issues.The proposed scantling process highlights that there is no need of complex algorithms if sound engineering judgment is applied in setting down rationally the hull scantling problem.A systematic approach based on a computer-coded procedure developed on purpose was effectively implemented and satisfactorily applied in design practice.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51609206,51522902 and 51579040)
文摘A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.
基金supported by the National Natural Science Foundation of China (10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.
文摘This article studies a semilinear parabolic first initial-boundary value problem with a concentrated nonlinear source in an infinitely long cylinder. We study the effects of the strength of the source on quenching. Criteria for global existence of the solution and for quenching are investigated.
基金supported by the Defense Industrial Technology Development Program of China(No.JCKY2018601C209)。
文摘Titanium alloys are widely used in the aviation and aerospace industries due to their unique mechanical and physical properties.Specifically,thin-walled titanium(Ti)cylinders have received increasing attention for their applications as rocket engine casings,aircraft landing gear,and aero-engine hollow shaft due to their observed improvement in the thrust-to-weight ratio.However,the conventional cutting(CC)process is not appropriate for thin-walled Ti cylinders due to its low thermal conductivity,high strength,and low stiffness.Instead,high-speed ultrasonic vibration cutting(HUVC)assisted processing has recently proved highly effective for Ti-alloy machining.In this study,HUVC technology is employed to perform external turning of a thinwalled Ti cylinder,which represents a new application of HUVC.First,the kinematics,tool path,and dynamic cutting thickness of HUVC are evaluated.Second,the phenomenon of mode-coupling chatter is analyzed to determine the effects and mechanism of HUVC by establishing a critical cutting thickness model.HUVC can increase the critical cutting thickness and effectively reduce the average cutting force,thus reducing the energy intake of the system.Finally,comparison experiments are conducted between HUVC and CC processes.The results indicate that the diameter error rate is 10%or less for HUVC and 51%for the CC method due to a 40%reduction in the cutting force.In addition,higher machining precision and better surface roughness are achieved during thin-walled Ti cylinder manufacturing using HUVC.
基金Supported by the National Natural Science Foundation of China (Grant No 10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)Construction Technology Program of Ministry of Transport(Grant No.2013 318 740 050)
文摘Experimental results of the dual-resonant and non-resonant responses are presented for vortex-induced vibrations(VIV)of a long slender cylinder.The cylinder has a diameter of 10mm and a length of 3.31 m,giving an aspect ratio of 331.The cylinder was towed by a carriage with the velocity up to 1.5 m/s,with the Reynolds number varying from 2500 to 38000.Three different weights were used to provide the initial tension.Dual resonance means that resonance occurs simultaneously in both the cross-flow(CF)and in-line(IL)directions.The experiments were conducted in two stages.At the first stage,dual-resonant dynamic features of the cylinder subjected to vortex-induced excitation were investigated.The features of CF and IL vibration amplitude,motion orbits,phase angle differences,dominant frequencies and mode order numbers are presented.At the second stage of the experiments,particular emphasis was placed on non-resonant dynamic features.The variation of multi-mode modal displacement amplitudes was investigated in detail.