Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer bi...Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.展开更多
Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,...Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.展开更多
Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as...Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as regulation of gene expression. Different lncRNAs exist throughout the genome. LncRNAs are also known for their roles in different human diseases such as cancer. HOTAIR is an lncRNA that plays a role as an oncogenic molecule in different cancer ceils, such as breast, gastric, colorectal, and cervical cancer cells. Therefore, HOTAIR expression level is a potential biomarker for diagnostic and therapeutic purposes in several cancers. This RNA takes part in epigenetic regulation of genes and plays an important role in different cellular pathways by interacting with Polycomb Repressive Complex 2 (PRC2). In this review, we describe the molecular function and regulation of HOTAIR and its role in different types of cancers.展开更多
Summary: This study aimed to examine the effect of long non-coding RNA (LncRNA) MEG3 on the biological behaviors of renal cell carcinoma (RCC) cells 786-0 and the possible mechanism. MEG3 expression levels were d...Summary: This study aimed to examine the effect of long non-coding RNA (LncRNA) MEG3 on the biological behaviors of renal cell carcinoma (RCC) cells 786-0 and the possible mechanism. MEG3 expression levels were detected by RT-qPCR in Rmaor tissues and adjacent non-tumor tissues from 29 RCC patients and in RCC lines 786-0 and SN12 and human embryonic kidney cell line 293T. Plasmids GV144-MEG3 (MEG3 overexpression plasmid) and GV144 (control plasmid) were stably transfected into 786-0 cells by using lipofectamine 2000. Cell viabilities were determined by MTT, cell apoptosis rates by flow cytometry following PE Annexin V and 7AAD staining, apoptosis-related protein expressions by Western blotting, and Bcl-2 mRNA by RT-qPCR in the transfected cells. The results showed that MEG3 was evidently downregulated in RCC tissues (P〈0.05) and RCC cell lines (P〈0.05). The viabilities of 786-0 cells were decreased significantly after transfection with GV144-MEG3 for over 24 h (P〈0.05). Consistently, the apoptosis rate was significantly increased in 786-0 cells transfected with GV144-MEG3 for 48 h (P〈0.05). Furthermore, overexpression of MEG3 could reduce the expression of Bcl-2 and procaspase-9 proteins, enhance the expression of cleaved caspase-9 protein, and promote the release of cytochrome c protein to cytoplasm (P〈0.05). Additionally, Bcl-2 mRNA level was declined by MEG3 overexpression (P〈0.05). It was concluded that MEG3 induces the apoptosis of RCC cells possibly by activating the mitochondrial pathway.展开更多
Long non-coding RNAs(lncRNAs) belong to a large and complex family of RNAs, which play many important roles in regulating gene expression. However, the mechanism underlying the dynamic expression of lncRNAs is still n...Long non-coding RNAs(lncRNAs) belong to a large and complex family of RNAs, which play many important roles in regulating gene expression. However, the mechanism underlying the dynamic expression of lncRNAs is still not very clear. In order to identify lncRNAs and clarify the mechanisms involved, we collected basic information and highlighted the mechanisms underlying lncRNA expression and regulation. Overall, lncRNAs are regulated by several similar transcription factors and protein-coding genes. Epigenetic modification(DNA methylation and histone modification) can also downregulate lncRNA levels in tissues and cells. Moreover, lncRNAs may be degraded or cleaved via interaction with miRNAs and miRNAassociated protein complexes. Furthermore, alternative RNA splicing(AS) may play a significant role in the post-transcriptional regulation of lncRNAs.展开更多
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” wit...Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” with no biological functions. There are many studies conducted on lncRNAs showing they are actively involved in regulation of epigenetic, transcriptional, and post-transcriptional events. Expressions of lncRNAs are more different in many malignant tumors than in benign tumors and normal tissue. Aberration of lncRNAs is responsible to promote or suppress tumorigenesis and cancer progression. Under different circumstances, lncRNAs exhibit their roles in carcinogenesis such as MALAT1 is responsible for intervening mRNA instability, HOTAIR, MALAT1, ANRIL, PVT1 links with miRNA and histonemodifying complexes, MEG3 associates with miRNA, CCAT2, MEG3, GAS5, UCA1 allies with c-Myc or P53 causing suppression of tumor or oncogenesis. Abnormal expressions of lncRNAs are noticed in gynecological cancers, such as cervical cancer, ovarian cancer, and endometrial cancer. Identification of cervical cancer associated lncRNAs is necessary to understand the molecular biogenesis of cancers. In this review, we summarized the foundation and function of the lncRNAs in terms of tumor progression, invasion, prognosis, apoptosis, metastasis, and chemo-resistance. This review will provide references to determine the clinical applications of lncRNAs as ideal diagnostic biomarkers or therapeutic targets in cervical cancers.展开更多
The biological features of the valvular heart disease with atrial fibrillation(AF-VHD)remain unknown when involving long non-coding RNAs(lncRNAs).This study performed system analysis on lncRNA and messenger RNA(mRNA)e...The biological features of the valvular heart disease with atrial fibrillation(AF-VHD)remain unknown when involving long non-coding RNAs(lncRNAs).This study performed system analysis on lncRNA and messenger RNA(mRNA)expression profiles constructed by using bioinformatics methods and tools for biological features of AF-VHD.Fold change and t-test were used to identify differentially expressed(DE)lncRNAs and mRNAs.The enrichment analysis of DE mRNAs was performed.The subgroups formed by lncRNAs and nearby mRNAs were screened,and a transcriptional regulation network among lncRNAs,mRNAs,and transcription factors(TFs)was constructed.The interactions between mRNAs related to lncRNAs and drugs were predicted.The 620 AF-VHDrelated DE lncRNAs and 452 DE mRNAs were identified.The 3 lncRNA subgroups were screened.The 665 regulations mediated by lncRNAs and TFs were identified.The 9 mRNAs related to lncRNAs had 1 or more potential drug interactions,totaling 37 drugs.Of these,9 drugs targeting 3 genes are already known to be able to control or trigger atrial fibrillation(AF)or other cardiac arrhythmias.The found biological features of AF-VHD provide foundations for further biological experiments to better understand the roles of lncRNAs in development from the valvular heart disease(VHD)to AF-VHD.展开更多
LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)...LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA,the result of which was further confirmed by RNAscope staining on a colon tissue chip.The results obtained using FEZF1-AS1 knockout colon cancer cells(SW480 KO and HCT-116 KO)constructed using CRISPR/Cas9 system confirmed the proliferation,invasion,and migration-promoting function of FEZF1-AS1 in vitro.Mechanistically,FEZF1-AS1 associated with the mitochondrial protein phosphoenolpyruvate carboxykinase(PCK2),which plays an essential role in regulating energy metabolism in the mitochondria.Knockdown of FEZF1-AS1 greatly decreased PCK2 protein levels,broke the homeostasis of energy metabolism in the mitochondria,and inhibited proliferation,invasion,and migration of SW480 and HCT-116 cells.PCK2 overexpression in FEZF1-AS1 knockout cells partially rescued the tumor inhibitory effect on colon cancer cells both in vitro and in vivo.Moreover,PCK2 overexpression specifically rescued the abnormal accumulation of Flavin mononucleotide(FMN)and succinate,both of which play an important role in oxidative phosphorylation(OXPHOS).Overall,these results indicate that FEZF1-AS1 is an oncogene through regulating energy metabolism of the cell.This research reveals a new mechanism for lncRNAs to regulate colon cancer and provides a potential target for colon cancer diagnosis and treatment.展开更多
Long noncoding RNA (lncRNA) is a leader of the degree of more than 200 nucleotides, almost do not have the function of protein coding endogenous RNA molecules. Recent studies show that, lncRNA is not encoded protein, ...Long noncoding RNA (lncRNA) is a leader of the degree of more than 200 nucleotides, almost do not have the function of protein coding endogenous RNA molecules. Recent studies show that, lncRNA is not encoded protein, but it has a wide range of biological functions, and lncRNA in human diseases, especially in oncology, more and more attention has been paid to its role. Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck in South China, which poses a serious threat to people’s health and life. Studies found that lncRNA is widely involved in the invasion, metastasis and prognosis of nasopharyngeal carcinoma (NPC). In this article, we will review the research progress of lncRNA in nasopharyngeal carcinoma.展开更多
目的研究缺血性脑卒中患者血清差异基因的筛选及生物信息学。方法以2023年3月-2024年3月在新疆医科大学第二附属医院神经内科确诊的80例缺血性脑卒中患者为病例组,选择同期80例健康体检者为对照组。分别挑选两组各10例受试者的外周血清...目的研究缺血性脑卒中患者血清差异基因的筛选及生物信息学。方法以2023年3月-2024年3月在新疆医科大学第二附属医院神经内科确诊的80例缺血性脑卒中患者为病例组,选择同期80例健康体检者为对照组。分别挑选两组各10例受试者的外周血清采用芯片差异性基因鉴定法筛选缺血性脑卒中差异表达的长链非编码RNA(lncRNA),并采用KEGG通路富集和基因本体论(GO)分析鉴定差异表达基因发挥的生物学功能。挑选2个上调和2个下调的lncR-NAs,在两组患者外周血中采用实时荧光定量PCR(qRT-PCR)法检测表达量,采用受试者工作特征曲线(Receiver operating characteristic,ROC)计算差异性表达lncRNAs诊断缺血性脑卒中的曲线下面积(Area under the curve,AUC)。结果共检测到34个高表达和16个低表达的lncR-NAs。KEGG通道分析显示,差异表达的lncRNAs涉及肿瘤坏死因子(TNF)信号通路、类风湿性关节炎、细胞因子与细胞因子受体相互作用,病毒蛋白与细胞因子和细胞因子受体的相互作用、癌症的转录失调、沙门氏菌感染、白细胞介素(IL)-17信号通路、趋化因子信号通路。GO分析显示,差异表达的lncRNAs涉及白细胞黏附调控、细胞黏附调节、白细胞与其他细胞黏附、细胞趋化性、T细胞活化、骨髓细胞分化、止血和凝血。qRT-PCR检测显示,与对照组比较,病例组患者A1BG-AS1和BRWD1-AS2表达量升高,BVES-AS1和C10ORF71-AS1表达量降低,差异有统计学意义(P<0.05)。ROC分析显示,A1BG-AS1、BRWD1-AS2、BVES-AS1和C10ORF71-AS1表达量诊断缺血性脑卒中的AUC分别为0.803、0.856、0.897和0.798(P<0.001)。结论缺血性脑卒中患者外周血中A1BG-AS1、BRWD1-AS2、BVES-AS1和C10ORF71-AS1基因差异性表达,可以辅助缺血性脑卒中的疾病诊断。展开更多
基金the Ramalingaswami Re-Entry Fellowship,Department of Biotechnology,Govt.of India to S.Sur(BT/RLF/Re-Entry/47/2021).
文摘Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.KYYJ202116)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2020]the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.
文摘Long non-coding RNAs (lncRNAs) refer to a group of RNAs that are usually more than 200 nucleotides and are not involved in protein generation. Instead, lncRNAs are involved in different regulatory processes, such as regulation of gene expression. Different lncRNAs exist throughout the genome. LncRNAs are also known for their roles in different human diseases such as cancer. HOTAIR is an lncRNA that plays a role as an oncogenic molecule in different cancer ceils, such as breast, gastric, colorectal, and cervical cancer cells. Therefore, HOTAIR expression level is a potential biomarker for diagnostic and therapeutic purposes in several cancers. This RNA takes part in epigenetic regulation of genes and plays an important role in different cellular pathways by interacting with Polycomb Repressive Complex 2 (PRC2). In this review, we describe the molecular function and regulation of HOTAIR and its role in different types of cancers.
基金supported by grants from the National Natural Science Foundation of China(Nos.81001132,81172423,and 81272816)
文摘Summary: This study aimed to examine the effect of long non-coding RNA (LncRNA) MEG3 on the biological behaviors of renal cell carcinoma (RCC) cells 786-0 and the possible mechanism. MEG3 expression levels were detected by RT-qPCR in Rmaor tissues and adjacent non-tumor tissues from 29 RCC patients and in RCC lines 786-0 and SN12 and human embryonic kidney cell line 293T. Plasmids GV144-MEG3 (MEG3 overexpression plasmid) and GV144 (control plasmid) were stably transfected into 786-0 cells by using lipofectamine 2000. Cell viabilities were determined by MTT, cell apoptosis rates by flow cytometry following PE Annexin V and 7AAD staining, apoptosis-related protein expressions by Western blotting, and Bcl-2 mRNA by RT-qPCR in the transfected cells. The results showed that MEG3 was evidently downregulated in RCC tissues (P〈0.05) and RCC cell lines (P〈0.05). The viabilities of 786-0 cells were decreased significantly after transfection with GV144-MEG3 for over 24 h (P〈0.05). Consistently, the apoptosis rate was significantly increased in 786-0 cells transfected with GV144-MEG3 for 48 h (P〈0.05). Furthermore, overexpression of MEG3 could reduce the expression of Bcl-2 and procaspase-9 proteins, enhance the expression of cleaved caspase-9 protein, and promote the release of cytochrome c protein to cytoplasm (P〈0.05). Additionally, Bcl-2 mRNA level was declined by MEG3 overexpression (P〈0.05). It was concluded that MEG3 induces the apoptosis of RCC cells possibly by activating the mitochondrial pathway.
文摘Long non-coding RNAs(lncRNAs) belong to a large and complex family of RNAs, which play many important roles in regulating gene expression. However, the mechanism underlying the dynamic expression of lncRNAs is still not very clear. In order to identify lncRNAs and clarify the mechanisms involved, we collected basic information and highlighted the mechanisms underlying lncRNA expression and regulation. Overall, lncRNAs are regulated by several similar transcription factors and protein-coding genes. Epigenetic modification(DNA methylation and histone modification) can also downregulate lncRNA levels in tissues and cells. Moreover, lncRNAs may be degraded or cleaved via interaction with miRNAs and miRNAassociated protein complexes. Furthermore, alternative RNA splicing(AS) may play a significant role in the post-transcriptional regulation of lncRNAs.
文摘Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” with no biological functions. There are many studies conducted on lncRNAs showing they are actively involved in regulation of epigenetic, transcriptional, and post-transcriptional events. Expressions of lncRNAs are more different in many malignant tumors than in benign tumors and normal tissue. Aberration of lncRNAs is responsible to promote or suppress tumorigenesis and cancer progression. Under different circumstances, lncRNAs exhibit their roles in carcinogenesis such as MALAT1 is responsible for intervening mRNA instability, HOTAIR, MALAT1, ANRIL, PVT1 links with miRNA and histonemodifying complexes, MEG3 associates with miRNA, CCAT2, MEG3, GAS5, UCA1 allies with c-Myc or P53 causing suppression of tumor or oncogenesis. Abnormal expressions of lncRNAs are noticed in gynecological cancers, such as cervical cancer, ovarian cancer, and endometrial cancer. Identification of cervical cancer associated lncRNAs is necessary to understand the molecular biogenesis of cancers. In this review, we summarized the foundation and function of the lncRNAs in terms of tumor progression, invasion, prognosis, apoptosis, metastasis, and chemo-resistance. This review will provide references to determine the clinical applications of lncRNAs as ideal diagnostic biomarkers or therapeutic targets in cervical cancers.
基金the National Natural Science Foundation of China under Grants No.61872405 and No.61720106004the Key Project of Natural Science Foundation of Guangdong Province under Grant No.2016A030311040.
文摘The biological features of the valvular heart disease with atrial fibrillation(AF-VHD)remain unknown when involving long non-coding RNAs(lncRNAs).This study performed system analysis on lncRNA and messenger RNA(mRNA)expression profiles constructed by using bioinformatics methods and tools for biological features of AF-VHD.Fold change and t-test were used to identify differentially expressed(DE)lncRNAs and mRNAs.The enrichment analysis of DE mRNAs was performed.The subgroups formed by lncRNAs and nearby mRNAs were screened,and a transcriptional regulation network among lncRNAs,mRNAs,and transcription factors(TFs)was constructed.The interactions between mRNAs related to lncRNAs and drugs were predicted.The 620 AF-VHDrelated DE lncRNAs and 452 DE mRNAs were identified.The 3 lncRNA subgroups were screened.The 665 regulations mediated by lncRNAs and TFs were identified.The 9 mRNAs related to lncRNAs had 1 or more potential drug interactions,totaling 37 drugs.Of these,9 drugs targeting 3 genes are already known to be able to control or trigger atrial fibrillation(AF)or other cardiac arrhythmias.The found biological features of AF-VHD provide foundations for further biological experiments to better understand the roles of lncRNAs in development from the valvular heart disease(VHD)to AF-VHD.
基金supported by the GDAS Special Project of Science and Technology Development (2019GDASYL-0103058)Guangdong Basic and Applied Basic Research Foundation,Natural Science Foundation of Guangdong Province (2019A1515011456).
文摘LncRNAs and metabolism represents two factors involved in cancer initiation and progression.However,the interaction between lncRNAs and metabolism remains to be fully explored.In this study,lncRNA FEZF1-AS1(FEZF1-AS1)was found upregulated in colon cancer after screening all the lncRNAs of colon cancer tissues deposited in TCGA,the result of which was further confirmed by RNAscope staining on a colon tissue chip.The results obtained using FEZF1-AS1 knockout colon cancer cells(SW480 KO and HCT-116 KO)constructed using CRISPR/Cas9 system confirmed the proliferation,invasion,and migration-promoting function of FEZF1-AS1 in vitro.Mechanistically,FEZF1-AS1 associated with the mitochondrial protein phosphoenolpyruvate carboxykinase(PCK2),which plays an essential role in regulating energy metabolism in the mitochondria.Knockdown of FEZF1-AS1 greatly decreased PCK2 protein levels,broke the homeostasis of energy metabolism in the mitochondria,and inhibited proliferation,invasion,and migration of SW480 and HCT-116 cells.PCK2 overexpression in FEZF1-AS1 knockout cells partially rescued the tumor inhibitory effect on colon cancer cells both in vitro and in vivo.Moreover,PCK2 overexpression specifically rescued the abnormal accumulation of Flavin mononucleotide(FMN)and succinate,both of which play an important role in oxidative phosphorylation(OXPHOS).Overall,these results indicate that FEZF1-AS1 is an oncogene through regulating energy metabolism of the cell.This research reveals a new mechanism for lncRNAs to regulate colon cancer and provides a potential target for colon cancer diagnosis and treatment.
文摘Long noncoding RNA (lncRNA) is a leader of the degree of more than 200 nucleotides, almost do not have the function of protein coding endogenous RNA molecules. Recent studies show that, lncRNA is not encoded protein, but it has a wide range of biological functions, and lncRNA in human diseases, especially in oncology, more and more attention has been paid to its role. Nasopharyngeal carcinoma (NPC) is a common malignant tumor of the head and neck in South China, which poses a serious threat to people’s health and life. Studies found that lncRNA is widely involved in the invasion, metastasis and prognosis of nasopharyngeal carcinoma (NPC). In this article, we will review the research progress of lncRNA in nasopharyngeal carcinoma.
文摘目的研究缺血性脑卒中患者血清差异基因的筛选及生物信息学。方法以2023年3月-2024年3月在新疆医科大学第二附属医院神经内科确诊的80例缺血性脑卒中患者为病例组,选择同期80例健康体检者为对照组。分别挑选两组各10例受试者的外周血清采用芯片差异性基因鉴定法筛选缺血性脑卒中差异表达的长链非编码RNA(lncRNA),并采用KEGG通路富集和基因本体论(GO)分析鉴定差异表达基因发挥的生物学功能。挑选2个上调和2个下调的lncR-NAs,在两组患者外周血中采用实时荧光定量PCR(qRT-PCR)法检测表达量,采用受试者工作特征曲线(Receiver operating characteristic,ROC)计算差异性表达lncRNAs诊断缺血性脑卒中的曲线下面积(Area under the curve,AUC)。结果共检测到34个高表达和16个低表达的lncR-NAs。KEGG通道分析显示,差异表达的lncRNAs涉及肿瘤坏死因子(TNF)信号通路、类风湿性关节炎、细胞因子与细胞因子受体相互作用,病毒蛋白与细胞因子和细胞因子受体的相互作用、癌症的转录失调、沙门氏菌感染、白细胞介素(IL)-17信号通路、趋化因子信号通路。GO分析显示,差异表达的lncRNAs涉及白细胞黏附调控、细胞黏附调节、白细胞与其他细胞黏附、细胞趋化性、T细胞活化、骨髓细胞分化、止血和凝血。qRT-PCR检测显示,与对照组比较,病例组患者A1BG-AS1和BRWD1-AS2表达量升高,BVES-AS1和C10ORF71-AS1表达量降低,差异有统计学意义(P<0.05)。ROC分析显示,A1BG-AS1、BRWD1-AS2、BVES-AS1和C10ORF71-AS1表达量诊断缺血性脑卒中的AUC分别为0.803、0.856、0.897和0.798(P<0.001)。结论缺血性脑卒中患者外周血中A1BG-AS1、BRWD1-AS2、BVES-AS1和C10ORF71-AS1基因差异性表达,可以辅助缺血性脑卒中的疾病诊断。