Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” wit...Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” with no biological functions. There are many studies conducted on lncRNAs showing they are actively involved in regulation of epigenetic, transcriptional, and post-transcriptional events. Expressions of lncRNAs are more different in many malignant tumors than in benign tumors and normal tissue. Aberration of lncRNAs is responsible to promote or suppress tumorigenesis and cancer progression. Under different circumstances, lncRNAs exhibit their roles in carcinogenesis such as MALAT1 is responsible for intervening mRNA instability, HOTAIR, MALAT1, ANRIL, PVT1 links with miRNA and histonemodifying complexes, MEG3 associates with miRNA, CCAT2, MEG3, GAS5, UCA1 allies with c-Myc or P53 causing suppression of tumor or oncogenesis. Abnormal expressions of lncRNAs are noticed in gynecological cancers, such as cervical cancer, ovarian cancer, and endometrial cancer. Identification of cervical cancer associated lncRNAs is necessary to understand the molecular biogenesis of cancers. In this review, we summarized the foundation and function of the lncRNAs in terms of tumor progression, invasion, prognosis, apoptosis, metastasis, and chemo-resistance. This review will provide references to determine the clinical applications of lncRNAs as ideal diagnostic biomarkers or therapeutic targets in cervical cancers.展开更多
Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate b...Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate because of their high cost and cumbersome preparatory procedures that ultimately lead to a low participation rate. People simply do not like to have colonoscopies. It would be ideal, therefore, to develop an alternative modality based on blood biomarkers as the first line screening test. This will allow for the differentiation of the general population from high risk individuals. Colonoscopy would then become the secondary test, to further screen the high risk segment of the population. This will encourage participation and therefore help to reach the goal of early detection and thereby reduce the anticipated increasing global CRC incidence rate. A blood-based screening test is anappealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher participation rate. This review surveys various blood-based test strategies currently under investigation, discusses the potency of what is available, and assesses how new technology may contribute to future test design.展开更多
文摘Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides mostly transcribed by RNA which do not encode proteins. Previously, lncRNAs were considered transcriptional byproducts called “junk DNA” with no biological functions. There are many studies conducted on lncRNAs showing they are actively involved in regulation of epigenetic, transcriptional, and post-transcriptional events. Expressions of lncRNAs are more different in many malignant tumors than in benign tumors and normal tissue. Aberration of lncRNAs is responsible to promote or suppress tumorigenesis and cancer progression. Under different circumstances, lncRNAs exhibit their roles in carcinogenesis such as MALAT1 is responsible for intervening mRNA instability, HOTAIR, MALAT1, ANRIL, PVT1 links with miRNA and histonemodifying complexes, MEG3 associates with miRNA, CCAT2, MEG3, GAS5, UCA1 allies with c-Myc or P53 causing suppression of tumor or oncogenesis. Abnormal expressions of lncRNAs are noticed in gynecological cancers, such as cervical cancer, ovarian cancer, and endometrial cancer. Identification of cervical cancer associated lncRNAs is necessary to understand the molecular biogenesis of cancers. In this review, we summarized the foundation and function of the lncRNAs in terms of tumor progression, invasion, prognosis, apoptosis, metastasis, and chemo-resistance. This review will provide references to determine the clinical applications of lncRNAs as ideal diagnostic biomarkers or therapeutic targets in cervical cancers.
基金Supported by The Valley Hospital Foundation Research FundThe community of The Valley Hospital in Ridgewood,NJ,especially Ms.Audrey Meyers,CEO,Mr.Anastasios Kozaitis,president of the Valley Hospital Foundation
文摘Early screening for colorectal cancer(CRC) holds the key to combat and control the increasing global burden of CRC morbidity and mortality. However, the current available screening modalities are severely inadequate because of their high cost and cumbersome preparatory procedures that ultimately lead to a low participation rate. People simply do not like to have colonoscopies. It would be ideal, therefore, to develop an alternative modality based on blood biomarkers as the first line screening test. This will allow for the differentiation of the general population from high risk individuals. Colonoscopy would then become the secondary test, to further screen the high risk segment of the population. This will encourage participation and therefore help to reach the goal of early detection and thereby reduce the anticipated increasing global CRC incidence rate. A blood-based screening test is anappealing alternative as it is non-invasive and poses minimal risk to patients. It is easy to perform, can be repeated at shorter intervals, and therefore would likely lead to a much higher participation rate. This review surveys various blood-based test strategies currently under investigation, discusses the potency of what is available, and assesses how new technology may contribute to future test design.