期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Ultralong cycle life enabled by in situ growth of CoMo_(1-x)P/Mo heterostructure for lithium-sulfur batteries 被引量:2
1
作者 Donghua Guo Mengwei Yuan +5 位作者 Xingzi Zheng Miaomiao Li Caiyun Nan Genban Sun Xianqiang Huang Huifeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期5-12,I0001,共9页
Lithium-sulfur batteries(Li-S batteries) are considered as promising new-generation electrochemical energy storage devices due to their extremely high theoretical energy density(2600 Wh kg-1) and theoretical specific ... Lithium-sulfur batteries(Li-S batteries) are considered as promising new-generation electrochemical energy storage devices due to their extremely high theoretical energy density(2600 Wh kg-1) and theoretical specific capacity(1675 m Ah g^(-1)). However, numerous problems such as poor conductivity and the shuttle effect during discharge-charge process limit the practical application of lithium-sulfur batteries. In this work, porous tubular Co Mo_(1-x)P/Mo constructed by in situ growth of metal Mo was designed as the sulfur host for lithium-sulfur batteries. The introduction of Mo modulated the electronic structure of Co Mo P to improve the conductivity of cathode and facilitate the redox kinetics, as well as the Co Mo_(1-x)P/Mo heterostructure was beneficial to inhibit the shuttle effect through the interaction with lithium polysulfides, which improved cycling stability. As a result, Co Mo_(1-x)P/Mo/S cathode had a low-capacity decay rate of only 0.029% per cycle after 2000 cycles at 0.5 C. This work provided a new perspective for the further design of high-performance lithium-sulfur battery cathode materials. 展开更多
关键词 Metal phosphide HETEROSTRUCTURE long cycle Shuttle effect Li-S batteries
下载PDF
Amorphous phosphorus chalcogenide as an anode material for lithiumion batteries with high capacity and long cycle life
2
作者 Jiale Yu Haiyan Zhang +5 位作者 Yingxi Lin Junyao Shen Yiwen Xie Xifeng Huang Qiong Cai Haitao Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期658-668,共11页
The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conven... The ever-increasing demands for modern energy storage applications drive the search for novel anode materials of lithium(Li)-ion batteries(LIBs) with high storage capacity and long cycle life, to outperform the conventional LIBs anode materials. Hence, we report amorphous ternary phosphorus chalcogenide(aP_(4)SSe_(2)) as an anode material with high performance for LIBs. Synthesized via the mechanochemistry method, the a-P_(4)SSe_(2) compound is endowed with amorphous feature and offers excellent cycling stability(over 1500 mA h g^(-1) capacity after 425 cycles at 0.3 A g^(-1)), owing to the advantages of isotropic nature and synergistic effect of multielement forming Li-ion conductors during battery operation. Furthermore,as confirmed by ex situ X-ray diffraction(XRD) and transmission electron microscope(TEM), the a-P_(4)SSe_(2)anode material has a reversible and multistage Li-storage mechanism, which is extremely beneficial to long cycle life for batteries. Moreover, the autogenous intermediate electrochemical products with fast ionic conductivity can facilitate Li-ion diffusion effectively. Thus, the a-P_(4)SSe_(2)electrode delivers excellent rate capability(730 mA h g^(-1)capacity at 3 A g^(-1)). Through in situ electrochemical impedance spectra(EIS) measurements, it can be revealed that the resistances of charge transfer(R_(SEI)) and solid electrolyte interphase(R_(Ct)) decrease along with the formation of Li-ion conductors whilst the ohmic resistance(R_(Ω)) remains unchanged during the whole electrochemical process, thus resulting in rapid reaction kinetics and stable electrode to obtain excellent rate performance and cycling ability for LIBs. Moreover, the formation mechanism and electrochemical superiority of the a-P_(4)SSe_(2)phase, and its expansion to P_(4)S_(3-x)Se_(x)(x = 0, 1, 2, 3) family can prove its significance for LIBs. 展开更多
关键词 Lithium-ion batteries Amorphous anode materials Lithium ionic conductor High capacity long cycle life
下载PDF
Synthesis of Co-Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life 被引量:1
3
作者 Ling-Yang Liu Xu Zhang +4 位作者 Hong-Xia Li Bao Liu Jun-Wei Lang Ling-Bin Kong Xing-Bin Yan 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第2期206-212,共7页
Li-ion hybrid capacitors(LIHCs),composing of a lithium-ion battery(LIB) type anode and a supercapacitor(SC) type cathode,gained worldwide popularity due to harmonious integrating the virtues of high energy densi... Li-ion hybrid capacitors(LIHCs),composing of a lithium-ion battery(LIB) type anode and a supercapacitor(SC) type cathode,gained worldwide popularity due to harmonious integrating the virtues of high energy density of LIBs with high power density of SCs.Herein,nanoflakes composed microflower-like Co-Ni oxide(CoNiO) was successfully synthesized by a simple co-precipitation method.The atomic ratio of as-synthesized CoNiO is determined to be 1:3 through XRD and XPS analytical method.As a typical battery-type material,CoNiO and capacitor-type activated polyanilinederived carbon(APDC) were used to assemble LIHCs as the anode and cathode materials,respectively.As a result,when an optimized mass ratio of CoNiO and APDC was 1:2,CoNiO//APDC LIHC could deliver a maximum energy density of 143 Wh kg^-1 at a working voltage of 1-4 V.It is worth mentioning that the LIHC also exhibits excellent cycle stability with the capacitance retention of -78.2%after 15,000 cycles at a current density of 0.5 A g^-1. 展开更多
关键词 Li-ion hybrid capacitor Energy storage device Co-precipitation method Cobalt nickel oxide APDC long cycle life
原文传递
Universal organic anodes enable safe low-cost aqueous rechargeable batteries with long cycle life,high capacity, and fast kinetics
4
作者 Weixing Song Guozhong Cao 《Science China Materials》 SCIE EI CSCD 2017年第8期789-791,共3页
Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the ... Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the transportation sector,which now accounts for the plurality of CO2emissions.For grid-scale applications,the benefits of adding storage are many and well documented[1–2].Beyond increased penetration of intermittent renewable energy generated from such as solar panels 展开更多
关键词 cycle life with and fast kinetics Universal organic anodes enable safe low-cost aqueous rechargeable batteries with long cycle life high capacity high
原文传递
Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium-selenium batteries 被引量:5
5
作者 Pengfei Lu Fangyan Liu +3 位作者 Feng Zhou Jieqiong Qin Haodong Shi Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期476-483,共8页
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S... Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries. 展开更多
关键词 LIGNIN Hierarchical porous carbon Lithium selenium battery long cycling stability Energy storage
下载PDF
Engineering molecular regulation for SiO_(x) with long-term stable cycle and high Coulombic efficiency as lithium-ion battery anodes
6
作者 Fei Wang Han Gao +3 位作者 Zhao-Yu Niu Yao-Peng Zheng Ming-Yan Chuai Jia-Nan Xu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期588-598,共11页
In the current situation where the practical application of silicon anode materials encounters great challenges,silicon oxide(SiO_(x),0≤x≤2)has attracted the attention of researchers due to its relatively small volu... In the current situation where the practical application of silicon anode materials encounters great challenges,silicon oxide(SiO_(x),0≤x≤2)has attracted the attention of researchers due to its relatively small volume expansion,stable cycling performance,and low cost,which is possible to realize commercial applications earlier than silicon anode.However,it remains a challenge to prepare SiO_(x)materials with long-term stable cycling performance and high Coulombic efficiency using low-cost methods.In this work,SiO_(x)anode material with high Coulombic efficiency and good long-term cycling stability was prepared at a low cost by hydrolysis of siloxane and in situ polymerization of phenolic resin.The hydrolysis of siloxane was further regulated by different silane coupling agents to regulate the size and microstructure of prepared SiO_(x)materials,which displayed the substantially improved electrochemical performance.The excellent electrochemical performance of SiO_(x)prepared by regulated hydrolysis of siloxane with silane coupling agents is attributed to the effect of silane coupling agent on size and microstructure of SiO_(x),revealing that the strategy of modulating the hydrolysis of siloxane by silane coupling agent is a potential method to prepare high-performance SiO_(x)materials. 展开更多
关键词 HYDROLYSIS Silane coupling agent long cycle SiO_(x) anode Lithium-ion battery(LIB)
原文传递
Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries 被引量:1
7
作者 Ming Xu Jiahang Chen +3 位作者 Yang Zhang Bareera Raza Chunyan Lai Jiulin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期575-587,I0014,共14页
Rechargeable Zinc(Zn)batteries exhibit great potentials as alternative energy storage devices due to their high safety,low cost,and environmental friendliness.However,the long-standing issues of low Coulombic efficien... Rechargeable Zinc(Zn)batteries exhibit great potentials as alternative energy storage devices due to their high safety,low cost,and environmental friendliness.However,the long-standing issues of low Coulombic efficiency(CE)and poor cycle stability of Zn anode,derived from dendrite,H_(2)evolution,and passivation are directly related to their thermodynamic instability in aqueous electrolyte,severely shorten the battery's cycle life.Recently reported electrolyte design strategies,which have made great progress to address Zn metal anode problems,are summarized into two categories,that is,aqueous electrolytes about cation-water interaction controlling and interface adjusting,and novel types of electrolytes towards less water,non-aqueous solvents,even no solvents.The final section shows the brief comparisons,including failure mechanisms of electrolyte exhaustion and short circuit for aqueous and nonaqueous electrolyte based full cells respectively,and possible perspectives for future research. 展开更多
关键词 Zinc anode Electrolyte design long cycle life
下载PDF
A cation-dipole-reinforced elastic polymer electrolyte enabling long-cycling quasi-solid-state lithium metal batteries 被引量:1
8
作者 Zhuyi Wang Yiming Wang +3 位作者 Pan Zhai Preeyaporn Poldorn Siriporn Jungsuttiwong Shuai Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期340-348,I0009,共10页
The application of ionic liquids(IL)in polymer electrolytes represents a safer alternative to the currently used organic solvents in lithium batteries due to their nonflammability and thermal stability.However,as a pl... The application of ionic liquids(IL)in polymer electrolytes represents a safer alternative to the currently used organic solvents in lithium batteries due to their nonflammability and thermal stability.However,as a plasticizer,it is generally agreed that the introduction of ionic liquid usually leads to a trade-off between ion transport and mechanical properties of polymer electrolyte.Here we report the synthesis of an IL-embedded polymer electrolyte with both high ionic conductivity(2.77×10^(-4)S cm^(-1)at room temperature)and excellent mechanical properties(high tensile strength up to 11.4 MPa and excellent stretchability of 387%elongation at break)achieved by strong ion–dipole interactions between polymer electrolyte components,which was unveiled by the DFT calculation.Moreover,this polymer electrolyte also exhibits nonflammability,good thermal stability and the ability to recover reversibly from applied stress,i.e.,excellent elasticity.This highly viscoelastic polymer electrolyte enables tight interfacial contact and good adaptability with electrodes for stable lithium stripping/plating for 2000 h under a current density of 0.1 mA cm^(-2).By coupling with this polymer electrolyte,the LiFePO_(4)/Li cells exhibit outstanding cycling stability at room temperature as well as the reliability under extreme environmental temperature or being abused. 展开更多
关键词 Elastic polymer electrolyte Ion-dipole interactions High tensile strength Quasi-solid-state lithium battery long cycling
下载PDF
KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage 被引量:2
9
作者 Shuya Zhang Yanchun Xue +7 位作者 Yutang Zhang Chengxing Zhu Xingmei Guo Fu Cao Xiangjun Zheng Qinghong Kong Junhao Zhang Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期601-610,共10页
To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedr... To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics. 展开更多
关键词 potassium hydroxide assisted aqueous strategy bimetallic zeolitic imidazolate frameworks bimetallic selenide lithium-ion batteries long cycle performance
下载PDF
KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries
10
作者 Kai Xue Yanchun Xue +7 位作者 Jing Wang Shuya Zhang Xingmei Guo Xiangjun Zheng Fu Cao Qinghong Kong Junhao Zhang Zhong Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期214-223,共10页
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid... To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion. 展开更多
关键词 KOH-assisted strategy Synthesis Aqueous solution NANOSTRUCTURE Lithium-ion batteries long cycle performance
下载PDF
Intrinsic lithiophilic carbon host derived from bacterial cellulose nanofiber for dendrite-free and long-life lithium metal anode
11
作者 Gangyi Xiong Jiayu Yu +2 位作者 Yalan Xing Puheng Yang Shichao Zhang 《Nano Research》 SCIE EI CSCD 2024年第5期4203-4210,共8页
Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries,the uncontrolled dendrite growth and infinite volume change impede its practical application.Herein,we report an ideal fram... Although lithium metal is considered a promising anode for advanced Li-S and Li-air batteries,the uncontrolled dendrite growth and infinite volume change impede its practical application.Herein,we report an ideal framework composed of carbonized bacterial cellulose(CBC)nanofibers,which shows intrinsic lithiophilicity to molten lithium without any lithiophilic surface modification.The wetting behavior of molten lithium can be significantly improved because its surface functional groups provide thermodynamical driving force,and the high surface roughness derived from nanocracks leads to rapid infusion in kinetics.The hybrid anode exhibits long cycle life up to 2000 h and excellent deep stripping-platting capacity up to 20 mAh·cm^(-2).When the anode is assembled with LiFePO_(4) cathode,the full cell delivers a good cycling stability up to 700 cycles.This is attributed to the intrinsic lithiophilic scaffold,which can not only lower the nucleation barrier of Li and provide uniform nucleation sites for stable Li stripping/plating,but also offer interspace to accommodate volume fluctuation of lithium during long cycling.This work provides a new manner to achieve a series of intrinsic lithiophilic carbon skeletons based on the large family of biomass materials and organic materials. 展开更多
关键词 intrinsic lithiophilicity lithium metal anode bacterial cellulose lithium dendrite long cycling life
原文传递
Nb_2O_5-carbon core-shell nanocomposite as anode material for lithium ion battery 被引量:5
12
作者 Ge Li Xiaolei Wang Xueming Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期357-362,共6页
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural c... Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and stuclled as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA.g-1, the composite electrode still exhibits a specific capacity of ~100 mAh.g-1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery. 展开更多
关键词 niobium pentoxide CORE-SHELL long cycle life high performance anode lithium ion battery
下载PDF
Defect-engineered Mn_(3)O_(4)/CNTs composites enhancing reaction kinetics for zinc-ions storage performance 被引量:3
13
作者 Xiuli Guo Hao Sun +7 位作者 Chunguang Li Siqi Zhang Zhenhua Li Xiangyan Hou Xiaobo Chen Jingyao Liu Zhan Shi Shouhua Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期538-547,共10页
The designing of reasonable nanocomposite materials and proper introduction of defect engineering are of great significance for the improvement of the poor electronic conductivity and slow reaction kinetics of mangane... The designing of reasonable nanocomposite materials and proper introduction of defect engineering are of great significance for the improvement of the poor electronic conductivity and slow reaction kinetics of manganese-based compounds. Herein, we report manganese-deficient Mn_(3)O_(4) nanoparticles which grow in-situ on highly conductive carbon nanotubes(CNTs)(denoted as DMOC) as an advanced cathode material for aqueous rechargeable zinc-ion batteries(RAZIBs). According to experimental and calculation results, the DMOC cathode integrates the advantages of enriched Mn defects and small particle size. These features not only enhance electronic conductivity but also create more active site and contribute to fast reaction kinetics. Moreover, the structure of DMOC is maintained during the charging and discharging process, thus benefiting for excellent cycle stability. As a result, the DMOC electrode delivers a high specific capacity of 420.6 m A h g^(-1) at 0.1 A g^(-1) and an excellent cycle life of 2800 cycles at 2.0 A g^(-1) with a high-capacity retention of 84.1%. In addition, the soft-packaged battery assembled with DMOC cathode exhibits long cycle life and high energy density of 146.3 Wh kg^(-1) at 1.0 A g^(-1) . The results are beneficial for the development of Zn/Mn_(3)O_(4) battery for practical energy storage. 展开更多
关键词 Manganese oxide Manganese defects High rate long cycle life Zinc ion batteries
下载PDF
Nitrogen-doped carbon stabilized Li Fe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries 被引量:3
14
作者 Haifeng Yu Zhaofeng Yang +2 位作者 Huawei Zhu Hao Jiang Chunzhong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1935-1940,共6页
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P... Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries. 展开更多
关键词 Cathode materials High power density CARBON long cycle life Li-ion batteries
下载PDF
Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries 被引量:2
15
作者 Xing-hua Qin Ye-hong Du +4 位作者 Peng-chao Zhang Xin-yu Wang Qiong-qiong Lu Ai-kai Yang Jun-cai Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1684-1692,共9页
Aqueous zinc-ion batteries(ZIBs)are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost,environmental friendliness,and high operations safety.H... Aqueous zinc-ion batteries(ZIBs)are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost,environmental friendliness,and high operations safety.However,to develop high-performance cathode is still significant for practical application of ZIBs.Herein,Ba_(0.23)V_(2)O_(5)·1.1H_(2)O(BaVO)nanobelts were fabricated as cathode materials of ZIBs by a typical hydrothermal synthesis method.Benefiting from the increased interlayer distance of 1.31 nm by Ba2+ and H2O pre-intercalated,the obtained BaVO nanobelts showed an excellent initial discharge capacity of 378 mAh·g^(-1) at 0.1 A·g^(-1),a great rate performance(e.g.,172 mAh·g^(-1) at 5 A·g^(-1)),and a superior capacity retention(93% after 2000 cycles at 5 A·g^(-1)). 展开更多
关键词 aqueous zinc-ion batteries barium vanadate nanobelts increased interlayer distance long cycle life
下载PDF
Carbon coated ultrasmall anatase TiO_2 nanocrystal anchored on N,S-RGO as high-performance anode for sodium ion batteries 被引量:2
16
作者 Lingfei Zhao Tong Tang +2 位作者 Weihua Chen Xiangming Feng Liwei Mi 《Green Energy & Environment》 SCIE 2018年第3期277-285,共9页
Anatase TiO_2 has been investigated as one of the most promising anode materials for sodium ion batteries(SIBs)with low cost and high theoretical capacity.Herein,a composite material of TiO_2 /N,S-RGO@C with carbon co... Anatase TiO_2 has been investigated as one of the most promising anode materials for sodium ion batteries(SIBs)with low cost and high theoretical capacity.Herein,a composite material of TiO_2 /N,S-RGO@C with carbon coated ultrasmall anatase TiO_2 anchored on nitrogen and sulfur co-doped RGO matrix was successfully prepared by a rational designed process.The composite structure exhibited ultrasmall crystal size,rich porous structure,homogeneous heteroatoms doping and thin carbon coating,which synergistically resulted in elevated electron and ion transfer.The anode exhibited high rate capacities with good reversibility under high rate cycling.The carbon coating was investigated to be effective to prevent active material falling and lead to long term cycling performance with a high capacity retention of 181 m Ah g^(à1)after 2000cycles at 2 C.Kinetic studies were carried out and the results revealed that the superior performance of the composite material were derived from the decreased charge transfer resistance and elevated ion diffusion.Results suggested that the TiO_2 /N,S-RGO@C composite is a promising anode material for sodium ion batteries. 展开更多
关键词 Titanium dioxide Nitrogen/sulfur doping RGO Sodium ion battery long cycle life
下载PDF
Novel fusiform core-shell-MOF derived in tact metal@carb on composite:An efficient cathode catalyst for aqueous and solid-state Zn-air batteries 被引量:1
17
作者 Di Zhou Hongquan Fu +2 位作者 Jilan Long Kui Shen Xinglong Gou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期385-394,I0011,共11页
Owing to the varied mechanisms of ORR/OER,exploiting cost-effective bifunctional catalysts with robust ORR/OER activities and excellent performances in Zn-air batteries is still a challenge.In this work,the Co/CoO@NSC... Owing to the varied mechanisms of ORR/OER,exploiting cost-effective bifunctional catalysts with robust ORR/OER activities and excellent performances in Zn-air batteries is still a challenge.In this work,the Co/CoO@NSC bifunctional catalyst is obtained by using Zn-MOF@Co-MOF as self-template.The Co/CoO@NSC composite has interconnected porous architecture with in tact metal@carb on structure,exhibiting superior electrocatalytic activities toward ORR and OER that can be comparable with the Pt/C and RuO_(2) catalysts,respectively.The Co/CoO@NSC-based aqueous Zn-air battery achieves a high specific capacity(759.7 mAh/g)and energy density(990.5 Wh/kg),and ultra-long rechargeable property(more than 400 h/1200 cycles).The Co/CoO@NSC-based solid-state Zn-air battery also delivers an excellent performance with a long cycle life(more than 143 h/858 cycles).Most importantly,the newly synthesized and recharged Co/CoO@NSC-based solid-state Zn-air battery can be used to light up a 2 V LED lamp for more than 28 h,demonstrating the superior practicability as rechargeable power source. 展开更多
关键词 Core-shell structure Metal organic framework Aqueous Zn-air battery Solid-state Zn-air battery Ultra long cycle life
下载PDF
Uniform zinc deposition on O,N-dual functionalized carbon cloth current collector
18
作者 Mengqi Zhou Guoqiang Sun Shuang-Quan Zang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期76-83,I0003,共9页
The society’s urgent demand for environmentally friendly, safe and low-cost energy storage devices has promoted the research of aqueous zinc-ion batteries. However, the uneven deposition of Zn ions on anodes will lea... The society’s urgent demand for environmentally friendly, safe and low-cost energy storage devices has promoted the research of aqueous zinc-ion batteries. However, the uneven deposition of Zn ions on anodes will lead to the growth of the dendrite and reduce the Coulombic efficiency as well as the lifespan of the devices. Herein, we construct an O,N-dual functionalized carbon cloth current collector via a simple hydrothermal strategy, in which the oxygen-containing functional groups and the N heteroatoms can regulate the transmission and deposition of Zn ions, respectively. The proposed synergistic strategy ensures the uniform distribution of Zn ions on the surface of the Zn anode and inhibits the formation of dendrites. The symmetric cell based on the O,N-dual doped carbon cloth presents superior cycling stability(318 h) with a low voltage hysteresis(11.2 mV) at an areal capacity of 1 m Ah cm^(-2)(20% depth of diacharge). Meanwhile, the appreciably low overpotential(16 m V) and high Columbic efficiency(98.2%)also demonstrate that the O,N-dual functionalized carbon cloth can be worked as a promising host for Zn ions deposition. 展开更多
关键词 O N-dual functionalized carbon cloth Synergistic strategy long cycle life Low overpotential Dendrite-free Zn anode
下载PDF
Highly stable aqueous rechargeable Zn-ion battery:The synergistic effect between NaV_(6)O_(15) and V_(2)O_(5) in skin-core heterostructured nanowires cathode
19
作者 Lanlan Fan Zhenhuan Li +1 位作者 Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期25-33,共9页
The aqueous rechargeable Zn-ion batteries based on the safe,low cost and environmental benignity aqueous electrolytes are one of the most compelling candidates for large scale energy storage applications.However,pursu... The aqueous rechargeable Zn-ion batteries based on the safe,low cost and environmental benignity aqueous electrolytes are one of the most compelling candidates for large scale energy storage applications.However,pursuing suitable insertion materials may be a great challenge due to the strong electrostatic interaction between Zn^(^(2+))and cathode materials.Hence,a novel NaV_(6)O_(15)/V_(2)O_(5) skin-core heterostructure nanowire is reported via a one-step hydrothermal method and subsequent calcination for high-stable aqueous Zn-ion batteries(ZIBs).The NaV_(6)O_(15)/V_(2)O_(5) cathode delivers high specific capacity of 390 m Ah/g at 0.3 A/g and outstanding cycling stability of 267 m Ah/g at 5 A/g with high capacity retention over 92.3%after 3000 cycles.The superior electrochemical performances are attributed to the synergistic effect of skin-core heterostructured NaV_(6)O_(15)/V_(2)O_(5),in which the sheath of NaV_(6)O_(15) possesses high stability and conductivity,and the V_(2)O_(5) endows high specific capacity.Besides,the heterojunction structure not only accelerates intercalation kinetics of Zn^(2+)transport but also further consolidates the stability of the layers of V_(2)O_(5) during the cyclic process.This work provides a new perspective in developing feasible insertion materials for rechargeable aqueous ZIBs. 展开更多
关键词 Aqueous zinc ion battery Heterojunction structure High specific capacity Stable long cycle Synergistic effect
下载PDF
Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials
20
作者 Pin Song Jun Di +14 位作者 Lixing Kang Manzhang Xu Bijun Tang Jun Xiong Jiewu Cui Qingsheng Zeng Jiadong Zhou Yongmin He Qundong Fu Juan Peng Shasha Guo Bo Lin Jingyu Zhang Peng Meng Zheng Liu 《Nano Materials Science》 CAS 2019年第4期310-317,共8页
Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We s... Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles). 展开更多
关键词 Na-ion batteries Carbon-based materials MOS2 long cycle life
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部