期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Symplectic Method of Numerical Simulation on Local Buckling for Cylindrical Long Shells under Axial Pulse Loads
1
作者 Kecheng Li Jianlong Qu +2 位作者 Jinqiang Tan Zhanjun Wu Xinsheng Xu 《Structural Durability & Health Monitoring》 EI 2021年第1期53-67,共15页
In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigen... In this paper,the local buckling of cylindrical long shells is discussed under axial pulse loads in a Hamiltonian system.Using this system,critical loads and modes of buckling of shells are reduced to symplectic eigenvalues and eigensolutions respectively.By the symplectic method,the solution of the local buckling of shells can be employed to the expansion series of symplectic eigensolutions in this system.As a result,relationships between critical buckling loads and other factors,such as length of pulse load,thickness of shells and circumferential orders,have been achieved.At the same time,symmetric and unsymmetric buckling modes have been discuss.Moreover,numerical results show that modes of post-buckling of shells can be Bamboo node-type,bending type,concave type and so on.Research in this paper provides analytical supports for ultimate load prediction and buckling failure assessment of cylindrical long shells under local axial pulse loads. 展开更多
关键词 Hamiltonian system symplectic method local buckling buckling analysis cylindrical long shell axial pulse load
下载PDF
SUBSTRUCTURE COMPUTATIONAL ALGORITHM FOR EXACT ANALYTIC METHOD
2
作者 纪振义 叶开沅 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第10期913-919,共7页
In[1], the exact analytic method for the solution of differential equation with variable coefficients was suggested and an analytic expression of solution was given by initial parameter algorithm. But to some problems... In[1], the exact analytic method for the solution of differential equation with variable coefficients was suggested and an analytic expression of solution was given by initial parameter algorithm. But to some problems such as the bending, free vibration and buckling of nonhomogeneous long cylinders, it is difficult to obtain their solutions by the initial parameter algorithm on computer. In this paper, the substructure computational algorithm for the exact analytic method is presented through the bending of non-homogeneous long cylindrical shell. This substructure algorithm can he applied to solve the problems which can not he calculated by the initial parameter algorithm on computer. Finally, the problems can he reduced to solving a low order system of algehraic equations like the initial parameter algorithm Numerical examples are given and compared with the initial para-algorithm at the end of the paper, which confirms the correctness of the substructure computational algorithm. 展开更多
关键词 substructure computational algorithm exact analytic method long cylindrical shell
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部