Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in c...Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.展开更多
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a...A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.展开更多
A new effective technique, useful in telecommunications industry for passing an optical telephone cord attached to a connector through pipeline,has been developed using the spiral flow. Using this technique, the cord ...A new effective technique, useful in telecommunications industry for passing an optical telephone cord attached to a connector through pipeline,has been developed using the spiral flow. Using this technique, the cord could be passed through a straight pipeline 150 meters long and a roll of vinyl tube 50 meters long. However, under the same condition, the cord could not pass through when using the turbulent flow. To obtain a high speed stable spiral flow, a nozzle with an annular slit connected to a conical cylinder was used. A pressurized fluid with no tangential flow was supplied through this slit and the fluid, passing through the conical cylinder, was deformed into spiral flow with the steeper axial velocity distribution compared to that of turbulence pipe flow due to Coanda effect and instability. As a result, the cord was attracted to the axis area of the pipe, which effectively increased the ability for the work of cord passing. This high ability for cord passing is attributed mainly to the reduction of the friction made between the cord and the pipe wall, caused by the deformation to spiral flow.展开更多
A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to l...A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.展开更多
The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. ...The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.展开更多
A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is pe...A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed by bifurcation diagrams plotted using the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gearbearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, quasiperiodic and chaotic behaviors. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.展开更多
This paper proposes a new combined cellular automaton (CA) model considering the driver behavior of stochastic acceleration and delay with the velocity of the preceding vehicle and the gap between the successive veh...This paper proposes a new combined cellular automaton (CA) model considering the driver behavior of stochastic acceleration and delay with the velocity of the preceding vehicle and the gap between the successive vehicles based on the WWH model and the noise-first NaSch model. It introduces the delay probability varying with the gap, adds the anticipation headway and increases the acceleration with a certain probability. Through these simulations, not only can the metastable state and start-stop wave be obtained but also the synchronized flow which the wide moving jam results in. Moreover, the effect of stochastic acceleration and delay on traffic flow is discussed by analyzing the correlation of traffic data. This indicates that synchronized flow easily emerges in the critical area between free flow and synchronized flow when acceleration and delay are synchronized or their probability is close to 0.5.展开更多
We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passa...We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passage. Using an array of surface markers and flow cytometric quantification, the data can be correlated to traditional measures of differentiation such as PCR and staining. Using these methods to quantify the amount of differentiation, we concluded that many common MSC markers do not specifically define MSCs with true stem cell properties. Additionally, adipose-derived as opposed to bone marrow-derived MSCs show long-term CD34+ labeling. The methods described can be used to help identify stem cell markers and to characterize the state of stem cells in vitro. Compiling these data from multiple laboratories would be helpful to determine source, extraction and culture methods needed to obtain high yields of useful stem cells.展开更多
基金This work was supported by the National High-Tech Foundation(863)under the gr ant 2001AA335020.
文摘Liquid composite moulding (LCM) processes are used to manufacture high quality and complex-shaped composite parts in the automotive, marine, aerospace and civil industries. On-line sensing plays an important role in controlling the quality of the final product in the LCM manufacturing environment. The long-period fiber grating (LPG) technology, a new real-time fiber optic sensor system, was developed to monitor the flow front progression. The sensor operation and characterization under various process conditions were discussed in detail. The experimental results showed that LPG sensors were robust and reliable to detect the arrival of resin at pre-selected locations in structures with low-medium fiber volume fraction; however were limited at different depths in structures with high fiber volume fraction.
基金supported by the National Natural Science Foundation of China (10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.
文摘A new effective technique, useful in telecommunications industry for passing an optical telephone cord attached to a connector through pipeline,has been developed using the spiral flow. Using this technique, the cord could be passed through a straight pipeline 150 meters long and a roll of vinyl tube 50 meters long. However, under the same condition, the cord could not pass through when using the turbulent flow. To obtain a high speed stable spiral flow, a nozzle with an annular slit connected to a conical cylinder was used. A pressurized fluid with no tangential flow was supplied through this slit and the fluid, passing through the conical cylinder, was deformed into spiral flow with the steeper axial velocity distribution compared to that of turbulence pipe flow due to Coanda effect and instability. As a result, the cord was attracted to the axis area of the pipe, which effectively increased the ability for the work of cord passing. This high ability for cord passing is attributed mainly to the reduction of the friction made between the cord and the pipe wall, caused by the deformation to spiral flow.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51609206,51522902 and 51579040)
文摘A numerical study based on a wake oscillator model was conducted to determine the response performance of vortex-induced vibration(VIV) on a long flexible cylinder with pinned-pinned boundary conditions subjected to linear and exponential shear flows. The coupling equations of a structural vibration model and wake oscillator model were solved using a standard central finite difference method of the second order. The VIV response characteristics including the structural displacement, structural frequency, structural wavenumber, standing wave behavior,travelling wave behavior, structural velocity, lift force coefficient and transferred energy from the fluid to the structure with different flow profiles were compared. The numerical results show that the VIV displacement is a combination of standing waves and travelling waves. For linear shear flow, standing waves and travelling waves dominate the VIV response within the low-velocity and high-velocity zones, respectively. The negative values of the transferred energy only occur within the low-velocity zone. However, for exponential shear flow, travelling waves dominate the VIV response and the negative energy occurs along the entire length of the cylinder.
基金supported by the National Natural Science Foundation of China (10972115)
文摘The long wave stability of core-annular flow of power-law fluids with an axial pressure gradient is investigated at low Reynolds number. The interface between the two fluids is populated with an insoluble surfactant. The analytic solution for the growth rate of perturbation is obtained with long wave approximation. We are mainly concerned with the effects of shear-thinning/thickening property and interfacial surfactant on the flow stability. The results show that the influence of shear-thinning/thickening property accounts to the change of the capillary number. For a clean interface, the shear-thinning property enhances the capillary instability when the interface is close to the pipe wall. The converse is true when the interface is close to the pipe centerline. For shear-thickening fluids, the situation is reversed. When the interface is close to the pipe centerline, the capillary instability can be restrained due to the influence of surfactant. A parameter set can be found under which the flow is linearly stable.
文摘A systematic analysis of the dynamic behavior of a gear-bearing system with nonlinear suspension, turbulent flow effect, long journal bearing approximation, nonlinear oil-film force and nonlinear gear mesh force is performed in the present study. The dynamic orbits of the system are observed by bifurcation diagrams plotted using the dimensionless unbalance coefficient and the dimensionless rotational speed ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, Lyapunov exponents and fractal dimension of the gearbearing system. The numerical results reveal that the system exhibits a diverse range of periodic, sub-harmonic, quasiperiodic and chaotic behaviors. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotational speed and highly nonlinear regimes.
基金supported by the National High Technology Research and Development Program of China (Grant Nos 2008AA01Z208and 2008AA022503)the National Natural Science Foundation of China (Grant Nos 60772150 and 60703018)the State KeyLaboratory of Software Engineering (SKLSE) (Grant No SKLSE20080707)
文摘This paper proposes a new combined cellular automaton (CA) model considering the driver behavior of stochastic acceleration and delay with the velocity of the preceding vehicle and the gap between the successive vehicles based on the WWH model and the noise-first NaSch model. It introduces the delay probability varying with the gap, adds the anticipation headway and increases the acceleration with a certain probability. Through these simulations, not only can the metastable state and start-stop wave be obtained but also the synchronized flow which the wide moving jam results in. Moreover, the effect of stochastic acceleration and delay on traffic flow is discussed by analyzing the correlation of traffic data. This indicates that synchronized flow easily emerges in the critical area between free flow and synchronized flow when acceleration and delay are synchronized or their probability is close to 0.5.
文摘We present methods to characterize mesenchymal stromal cells (MSC) over long time periods in vitro. The methods entail passaging cells multiple times and performing differentiation studies with the cells at each passage. Using an array of surface markers and flow cytometric quantification, the data can be correlated to traditional measures of differentiation such as PCR and staining. Using these methods to quantify the amount of differentiation, we concluded that many common MSC markers do not specifically define MSCs with true stem cell properties. Additionally, adipose-derived as opposed to bone marrow-derived MSCs show long-term CD34+ labeling. The methods described can be used to help identify stem cell markers and to characterize the state of stem cells in vitro. Compiling these data from multiple laboratories would be helpful to determine source, extraction and culture methods needed to obtain high yields of useful stem cells.