According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main...According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.展开更多
This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipelin...This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.展开更多
文摘According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta.
文摘This article describes numerical simulation of gas pipeline network operation using high-accuracy computational fluid dynamics (CFD) simulators of the modes of gas mixture transmission through long, multi-line pipeline systems (CFD-simulator). The approach used in CFD-simulators for modeling gas mixture transmission through long, branched, multi-section pipelines is based on tailoring the full system of fluid dynamics equations to conditions of unsteady, non-isothermal processes of the gas mixture flow. Identification, in a CFD-simulator, of safe parameters for gas transmission through compressor stations amounts to finding the interior points of admissible sets described by systems of nonlinear algebraic equalities and inequalities. Such systems of equalities and inequalities comprise a formal statement of technological, design, operational and other constraints to which operation of the network equipment is subject. To illustrate the practicability of the method of numerical simulation of a gas transmission network, we compare computation results and gas flow parameters measured on-site at the gas transmission enter-prise.