为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimizati...为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。展开更多
文摘为提取能表示滚动轴承寿命退化的深层特征,用变分模态分解算法(Variational Model Decomposition,VMD)分解轴承的横向振动信号。为了解决VMD中需要手动选取惩罚因子α及模态分量数目K的问题,用粒子群优化算法(Particle Swarm Optimization,PSO)对VMD进行了优化,以提取出更能代表寿命变化的特征。在此基础上,将筛选的特征输入到双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)网络中进行剩余使用寿命预测。通过实验并与其他深度模型进行对比,该文提出模型的均方误差等指标均比其他几种模型更低,证明了该文模型在轴承剩余使用寿命预测上的有效性。