Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypot...Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.展开更多
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ...Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.展开更多
Although there is an accumulating appreciation of the key roles that long intergenic non-coding RNAs (lincRNAs) play in diverse cellular processes, our knowledge of how lincRNAs function in cancer remains sparse. He...Although there is an accumulating appreciation of the key roles that long intergenic non-coding RNAs (lincRNAs) play in diverse cellular processes, our knowledge of how lincRNAs function in cancer remains sparse. Here, we present a comprehensive landscape of RNA-seq transcriptome profiles of lung adenocarcinomas and their paired normal counterparts to unravel gene regulation rules of lincRNAs. Consistent with previous findings of co-expression between neighboring protein-coding genes, lincRNAs were typically co-expressed with their neighboring genes, which was found in both cancerous and normal tissues. By building a mathematical model based on correlated gene expression, we distinguished an additional subset of lincRNAs termed "regulatory lincRNAs", representing their dominant roles in gene regulation. The number of regulatory lincRNAs was significantly higher in cancerous compared to normal tissues, and most of them positively regulated protein-coding genes in trans. Functional validation, using knockdown, determined that regulatory lincRNA, GASS, affected its predicted protein-coding targets. Moreover, we discovered hundreds of differentially expressed regulatory lincRNAs with inclusion of some cancer-associated lincRNAs. Our integrated analysis reveals enhanced regulatory effects of lincRNAs and provides a resource for the study of regulatory lincRNAs that play critical roles in lung adenocarcinoma.展开更多
Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer bi...Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.展开更多
Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identifi...Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.展开更多
Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the...Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns,across different neurodegenerative diseases.However,the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood.This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles,regulatory mechanisms,and research status of lncRNAs in Alzheimer's disease,Parkinson's disease,Huntington's disease,and amyotrophic lateral sclerosis.Finally,this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases,hoping to provide broader implications for developing effective treatments.展开更多
Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expr...Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.展开更多
BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and ...BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.展开更多
Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect du...Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.展开更多
Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-t...Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.展开更多
BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in t...BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in tumor progression.CASC19 is a new bio-marker which can promote tumor invasion and metastasis.However,the mechanism by which CASC19 affects the progression of GC through miRNA is not clear.AIM To explore the role of the CASC19/miR-491-5p/HMGA2 regulatory axis in GC.METHODS To explore the expression and prognosis of CASC19 in GC through clinical samples,and investigate the effects of inhibiting CASC19 on the proliferation,migration,invasion and other functions of GC cells through cell counting Kit-8(CCK-8),ethynyldeoxyuridine,Wound healing assay,Transwell,Western blot and flow cytometry experiments.The effect of miR-491-5p and HMGA2 in GC were also proved.The regulatory relationship between CASC19 and miR-491-5p,miR-491-5p and HMGA2 were validated through Dual-luciferase reporter gene assay and reverse transcription PCR.Then CCK-8,Transwell,Wound healing assay,flow cytometry and animal experiments verify the role of CASC19/miR-491-5p/HMGA2 regulatory axis.RESULTS The expression level of CASC19 is related to the T stage,N stage,and tumor size of patients.Knockdown of the expression of CASC19 can inhibit the ability of proliferation,migration,invasion and EMT conversion of GC cells,and knocking down the expression of CASC19 can promote the apoptosis of GC cells.Increasing the expression of miR-491-5p can inhibit the proliferation of GC cells,miR-491-5p mimics can inhibit EMT conversion,and promote the apoptosis of GC cells,while decreasing the expression of miR-491-5p can promote the proliferation and EMT conversion and inhibit the apoptosis of GC cells.The expression of HMGA2 in GC tissues is higher than that in adjacent tissues.At the same time,the expression level of HMGA2 is related to the N and T stages of the patients.Reducing the level of HMGA2 can promote cell apoptosis and inhibit the proliferation of GC cells.Cell experiments and animal experiments have proved that CASC19 can regulates the expression of HMGA2 through miR-491-5p,thereby affecting the biological functions of GC.CONCLUSION CASC19 regulates the expression of HMGA2 through miR-491-5p to affect the development of GC.This axis may serve as a potential biomarker and therapeutic target of GC.展开更多
BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 p...BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.展开更多
Long non-coding RNAs(lncRNAs)are members of the non-protein coding RNA family longer than 200 nucleotides.They participate in the regulation of gene and protein expression influencing apoptosis,cell proliferation and ...Long non-coding RNAs(lncRNAs)are members of the non-protein coding RNA family longer than 200 nucleotides.They participate in the regulation of gene and protein expression influencing apoptosis,cell proliferation and immune responses,thereby playing a critical role in the development and progression of various cancers,including colorectal cancer(CRC).As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality,its screening and early detection are crucial,so the identification of disease-specific biomarkers is necessary.LncRNAs are promising candidates as they are involved in carcinogenesis,and certain lncRNAs(e.g.,CCAT1,CRNDE,CRCAL1-4)show altered expression in adenomas,making them potential early diagnostic markers.In addition to being useful as tissue-specific markers,analysis of circulating lncRNAs(e.g.,CCAT1,CCAT2,BLACAT1,CRNDE,NEAT1,UCA1)in peripheral blood offers the possibility to establish minimally invasive,liquid biopsy-based diagnostic tests.This review article aims to describe the origin,structure,and functions of lncRNAs and to discuss their contribution to CRC development.Moreover,our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.展开更多
Gastric cancer(GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. Micro RNAs(mi RNAs) and long non-coding RNAs(lnc RNAs) are the most popular non-coding RNAs in cancer rese...Gastric cancer(GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. Micro RNAs(mi RNAs) and long non-coding RNAs(lnc RNAs) are the most popular non-coding RNAs in cancer research. To date,the roles of mi RNAs and lnc RNAs have been extensively studied in GC,suggesting that mi RNAs and lnc RNAs represent a vital component of tumor biology. Furthermore,circulating mi RNAs and lnc RNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating mi RNAs and lnc RNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for mi RNA secretion have been elucidated,including active secretion by microvesicles,exosomes,apoptotic bodies,highdensity lipoproteins and protein complexes as well as passive leakage from cells. However,the mechanism underlying lnc RNA secretion and the functions of circulating mi RNAs and lnc RNAs have not been fully illuminated. Concurrently,to standardize results of global investigations of circulating mi RNAs and lnc RNAs biomarker studies,several recommendations for preanalytic considerations are put forward. In this review,we summarize the known circulating mi RNAs and lnc RNAs for GC diagnosis. The possible mechanism of mi RNA and lnc RNA secretion as well as methodologies for identification of circulating mi RNAs and lnc RNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.展开更多
Hepatocellular carcinoma(HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs(lncR...Hepatocellular carcinoma(HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs(lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of m RNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.展开更多
An overwhelming majority of the transcribed genome encodes for non-coding RNA(ncR NA) sequences. Deep sequencing of the transcriptome has uncovered tens of thousands of long ncR NA(lncR NA) sequences. However, little ...An overwhelming majority of the transcribed genome encodes for non-coding RNA(ncR NA) sequences. Deep sequencing of the transcriptome has uncovered tens of thousands of long ncR NA(lncR NA) sequences. However, little is known regarding the possible functions for a vast majority of these sequences. Among those lncR NAs whose function has been experimentally validated, most serve as regulators of gene expression. LncR NAs have been found to be critical to development and homeostasis and they have been implicated in several pathologies including cancer. Here, we examine the functions and underlying mechanisms of lnc RNAs in stem cells and in cancer biology, areas linked by the actions of lncR NAs.展开更多
In China, hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC), which is called HBV-related HCC (HBV-HCC), but the pathogenesis has not been clearly elu- cidated. Long non-codin...In China, hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC), which is called HBV-related HCC (HBV-HCC), but the pathogenesis has not been clearly elu- cidated. Long non-coding RNAs (lncRNAs) have been paid increasing attention to, as an important regulatory molecule involved in many biological processes, as well as a variety of diseases. This study examined lncRNA that might play an important role in HBV-HCC pathogenesis by conducting lncRNA and mRNA profile comparison between HBV-HCC and normal liver tissues. The differentially ex- pressed lncRNA and mRNA profiles between HBV-HCC and normal liver tissues were analyzed by mi- croarrays. The potential protein-encoding gene regulated by lncRNA, and the biological function (gene ontology, pathway analysis) of the target gene were investigated. The results showed that the expression levels of lncRNA and mRNA in HBV-HCC tissues were different from those in normal liver tissues. As compared with normal liver tissue, 837 (4.30%) lncRNAs exhibited more than two-fold change (P〈0.05); 325 were up-regulated, and 512 were down-regulated; 991 (5.70%) mRNAs exhibited more than 2-fold change (P〈0.05); 733 were up-regulated and 258 were down-regulated in HBV-HCC tissue. Besides, there were 7 lncRNAs with above 10-fold elevation, 6 lncRNAs with above 10-fold decrease, 18 mRNAs with above 10-fold elevation and 11 mRNAs with above 10-fold decrease. 444 (53.05%) lncRNAs had their corresponding mRNAs, some of which were adjacent to lncRNAs. The biological analysis showed that the target gene of differentially expressed lncRNAs took part in the important bio- logical regulatory function. Target gene-related pathway analysis revealed the pathways in carcinoma and mitogen-activated protein kinase (MAPK) signaling pathways significantly changed in the HBV-HCC tissues as compared with normal liver tissues (P〈0.05). It was suggested that as compared with normal liver tissues, the expression of lncRNAs in HBV-HCC tissues changed significantly, and lncRNAs played a key role in the pathogenesis of HBV-HCC probably by mainly regulating the carci- noma-related signaling pathway and MAPK signaling pathways.展开更多
Hepatocellular carcinoma(HCC) is one of the most common malignancies leading to high mortality rates in the general population and the sixth most common cancer worldwide. HCC is characterized by deregulation of multip...Hepatocellular carcinoma(HCC) is one of the most common malignancies leading to high mortality rates in the general population and the sixth most common cancer worldwide. HCC is characterized by deregulation of multiple genes and signalling pathways. These genetic effects can involve both protein coding genes as well as non-coding RNA genes. Long noncoding RNAs(lnc RNAs) are transcripts longer than 200 nt, constituting a subpopulation of nc RNAs. Their biological effects are not well understood comparedto small non-coding RNA(micro RNAs), but they have been recently recognized to exert a crucial role in the regulation of gene expression and modulation of signalling pathways. Notably, several studies indicated that lnc RNAs contribute to the pathogenesis and progression of HCC. Investigating the molecular mechanisms underlying lnc RNAs expression opens potential applications in diagnosis and treatment of liver disease. This editorial provides three examples(MALAT-1 metastasis associated lung adenocarcinoma transcript, HULC highly upregulated in liver cancer and HOTAIR HOX transcript antisense intergenic RNA) of well-known lnc RNAs upregulated in HCC, whose mechanisms of action are known, and for which therapeutic applications are delineated. Targeting of lnc RNAs using several approaches(siR NA-mediated silencing or changing their secondary structure) offers new possibility to treat HCC.展开更多
Long non-coding RNAs(lncRNAs)are abundantly expressed in the central nervous system and exert a critical role in gene regulation via multiple biological processes.To uncover the functional significance and molecular m...Long non-coding RNAs(lncRNAs)are abundantly expressed in the central nervous system and exert a critical role in gene regulation via multiple biological processes.To uncover the functional significance and molecular mechanisms of lncRNAs in spinal cord injury(SCI),the expression signatures of lncRNAs were profiled using RNA sequencing(RNA-seq)technology in a Sprague-Dawley rat model of the 10th thoracic vertebra complete transection SCI.Results showed that 116 of 14,802 detected lncRNAs were differentially expressed,among which 16—including eight up-regulated(H19,Vof16,Hmox2-ps1,LOC100910973,Ybx1-ps3,Nnat,Gcgr,LOC680254)and eight down-regulated(Rmrp,Terc,Ngrn,Ppp2r2b,Cox6a2,Rpl37a-ps1,LOC360231,Rpph1)—demonstrated fold changes>2 in response to transection SCI.A subset of these RNA-seq results was validated by quantitative real-time PCR.The levels of 821 mRNAs were also significantly altered post-SCI;592 mRNAs were up-regulated and 229 mRNAs were down-regulated by more than 2-fold.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses showed that differentially expressed mRNAs were related to GO biological processes and molecular functions such as injury and inflammation response,wound repair,and apoptosis,and were significantly enriched in 15 KEGG pathways,including cell phagocytosis,tumor necrosis factor alpha pathway,and leukocyte migration.Our results reveal the expression profiles of lncRNAs and mRNAs in the rat spinal cord of a complete transection model,and these differentially expressed lncRNAs and mRNAs represent potential novel targets for SCI treatment.We suggest that lncRNAs may play an important role in the early immuno-inflammatory response after spinal cord injury.This study was approved by the Administration Committee of Experimental Animals,Guangdong Province,China.展开更多
Gastric cancer is the second leading cause of cancer-related deaths.Metastasis,which is an important element of gastric cancer,leads to a high mortality rate and to a poor prognosis.Gastric cancer metastasis has a com...Gastric cancer is the second leading cause of cancer-related deaths.Metastasis,which is an important element of gastric cancer,leads to a high mortality rate and to a poor prognosis.Gastric cancer metastasis has a complex progression that involves multiple biological processes.The comprehensive mechanisms of metastasis remain unclear,though traditional regulation modulates the molecular functions associated with metastasis.Long non-coding RNAs(lnc RNAs) have a role in different gene regulatory pathways by epigenetic modification and by transcriptional and post-transcription regulation.lnc RNAs participate in various diseases,including Alzheimer's disease,cardiovascular disease,and cancer.The altered expressions of certain lnc RNAs are linked to gastric cancer metastasis and invasion,as with tumor suppressor genes or oncogenes.Studies have partly elucidated the roles of lnc RNAs as biomarkers and in therapies,as well as their gene regulatory mechanisms.However,comprehensive knowledge regarding the functional mechanisms of gene regulation in metastatic gastric cancer remains scarce.To provide a theoretical basis for therapeutic intervention in metastatic gastric cancer,we reviewed the functions of lnc RNAs and their regulatory roles in gastric cancer metastasis.展开更多
文摘Objective Cytokine responses to activation of innate immunity differ between individuals,yet the genomic and tissue-specific transcriptomic determinants of inflammatory responsiveness are not well understood. We hypothesized that tissue-specific mRNA and long intergenic non-coding RNA (lincRNA) induction differs between individuals with divergent evoked inflammatory responses.
基金supported by the National Natural Science Foundation of China,Nos.82301486(to SL)and 82071325(to FY)Medjaden Academy&Research Foundation for Young Scientists,No.MJR202310040(to SL)+2 种基金Nanjing Medical University Science and Technique Development,No.NMUB20220060(to SL)Medical Scientific Research Project of Jiangsu Commission of Health,No.ZDA2020019(to JZ)Health China Buchang Zhiyuan Public Welfare Project for Heart and Brain Health,No.HIGHER202102(to QD).
文摘Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
基金supported by the National Basic Research Program of China (No. 2011CB510100)the National Natural Science Foundation of China (No. 81030015)
文摘Although there is an accumulating appreciation of the key roles that long intergenic non-coding RNAs (lincRNAs) play in diverse cellular processes, our knowledge of how lincRNAs function in cancer remains sparse. Here, we present a comprehensive landscape of RNA-seq transcriptome profiles of lung adenocarcinomas and their paired normal counterparts to unravel gene regulation rules of lincRNAs. Consistent with previous findings of co-expression between neighboring protein-coding genes, lincRNAs were typically co-expressed with their neighboring genes, which was found in both cancerous and normal tissues. By building a mathematical model based on correlated gene expression, we distinguished an additional subset of lincRNAs termed "regulatory lincRNAs", representing their dominant roles in gene regulation. The number of regulatory lincRNAs was significantly higher in cancerous compared to normal tissues, and most of them positively regulated protein-coding genes in trans. Functional validation, using knockdown, determined that regulatory lincRNA, GASS, affected its predicted protein-coding targets. Moreover, we discovered hundreds of differentially expressed regulatory lincRNAs with inclusion of some cancer-associated lincRNAs. Our integrated analysis reveals enhanced regulatory effects of lincRNAs and provides a resource for the study of regulatory lincRNAs that play critical roles in lung adenocarcinoma.
基金the Ramalingaswami Re-Entry Fellowship,Department of Biotechnology,Govt.of India to S.Sur(BT/RLF/Re-Entry/47/2021).
文摘Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.
文摘Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.
基金supported by the National Natural Science Foundation of China,Nos.91649119 and 92049105(both to JL)。
文摘Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns,across different neurodegenerative diseases.However,the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood.This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles,regulatory mechanisms,and research status of lncRNAs in Alzheimer's disease,Parkinson's disease,Huntington's disease,and amyotrophic lateral sclerosis.Finally,this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases,hoping to provide broader implications for developing effective treatments.
基金Supported by the National Natural Science Foundation of China,No.81472782National Clinical Key Specialty Department(Oncology)of China,No.YWC-ZKJS-2023-01Research Fund of Yili Institute of Clinical Medicine,No.yl2021ms02.
文摘Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
基金Supported by The Scientific Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission Administration of Traditional Chinese Medicine,No.2021010 and No.2023166Xiao-Ping Chen Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH122002-073.
文摘BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.
基金The National Key R&D Program of China(Key Special Project for Marine Environmental Security and Sustainable Development of Coral Reefs 2022-3.3),No.2022YFC3103-004001Scientific Research Foundation of Shanghai Municipal Health Commission of Changning District,No.20234Y038.
文摘Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.
基金supported by the Medical Science and Technology Research Foundation of Guangdong Province(No.A2020559).
文摘Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.
基金Supported by Natural Science Foundation of Anhui Province,No.2108085QH337Research Fund of Anhui Medical University,No.2022xkj156+1 种基金Key Projects of Anhui Provincial Department of Education,No.2023AH053330Anhui Institute of Translational Medicine Research Fund,No.2022zhyx-C88.
文摘BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in tumor progression.CASC19 is a new bio-marker which can promote tumor invasion and metastasis.However,the mechanism by which CASC19 affects the progression of GC through miRNA is not clear.AIM To explore the role of the CASC19/miR-491-5p/HMGA2 regulatory axis in GC.METHODS To explore the expression and prognosis of CASC19 in GC through clinical samples,and investigate the effects of inhibiting CASC19 on the proliferation,migration,invasion and other functions of GC cells through cell counting Kit-8(CCK-8),ethynyldeoxyuridine,Wound healing assay,Transwell,Western blot and flow cytometry experiments.The effect of miR-491-5p and HMGA2 in GC were also proved.The regulatory relationship between CASC19 and miR-491-5p,miR-491-5p and HMGA2 were validated through Dual-luciferase reporter gene assay and reverse transcription PCR.Then CCK-8,Transwell,Wound healing assay,flow cytometry and animal experiments verify the role of CASC19/miR-491-5p/HMGA2 regulatory axis.RESULTS The expression level of CASC19 is related to the T stage,N stage,and tumor size of patients.Knockdown of the expression of CASC19 can inhibit the ability of proliferation,migration,invasion and EMT conversion of GC cells,and knocking down the expression of CASC19 can promote the apoptosis of GC cells.Increasing the expression of miR-491-5p can inhibit the proliferation of GC cells,miR-491-5p mimics can inhibit EMT conversion,and promote the apoptosis of GC cells,while decreasing the expression of miR-491-5p can promote the proliferation and EMT conversion and inhibit the apoptosis of GC cells.The expression of HMGA2 in GC tissues is higher than that in adjacent tissues.At the same time,the expression level of HMGA2 is related to the N and T stages of the patients.Reducing the level of HMGA2 can promote cell apoptosis and inhibit the proliferation of GC cells.Cell experiments and animal experiments have proved that CASC19 can regulates the expression of HMGA2 through miR-491-5p,thereby affecting the biological functions of GC.CONCLUSION CASC19 regulates the expression of HMGA2 through miR-491-5p to affect the development of GC.This axis may serve as a potential biomarker and therapeutic target of GC.
基金Natural Science Foundation of Shandong Province,No.ZR2020MH207 and No.ZR2020MH251.
文摘BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.
基金Supported by the National Research,Development and Innovation Office,No.NVKP_16-1-2016-0004
文摘Long non-coding RNAs(lncRNAs)are members of the non-protein coding RNA family longer than 200 nucleotides.They participate in the regulation of gene and protein expression influencing apoptosis,cell proliferation and immune responses,thereby playing a critical role in the development and progression of various cancers,including colorectal cancer(CRC).As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality,its screening and early detection are crucial,so the identification of disease-specific biomarkers is necessary.LncRNAs are promising candidates as they are involved in carcinogenesis,and certain lncRNAs(e.g.,CCAT1,CRNDE,CRCAL1-4)show altered expression in adenomas,making them potential early diagnostic markers.In addition to being useful as tissue-specific markers,analysis of circulating lncRNAs(e.g.,CCAT1,CCAT2,BLACAT1,CRNDE,NEAT1,UCA1)in peripheral blood offers the possibility to establish minimally invasive,liquid biopsy-based diagnostic tests.This review article aims to describe the origin,structure,and functions of lncRNAs and to discuss their contribution to CRC development.Moreover,our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.
文摘Gastric cancer(GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. Micro RNAs(mi RNAs) and long non-coding RNAs(lnc RNAs) are the most popular non-coding RNAs in cancer research. To date,the roles of mi RNAs and lnc RNAs have been extensively studied in GC,suggesting that mi RNAs and lnc RNAs represent a vital component of tumor biology. Furthermore,circulating mi RNAs and lnc RNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating mi RNAs and lnc RNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for mi RNA secretion have been elucidated,including active secretion by microvesicles,exosomes,apoptotic bodies,highdensity lipoproteins and protein complexes as well as passive leakage from cells. However,the mechanism underlying lnc RNA secretion and the functions of circulating mi RNAs and lnc RNAs have not been fully illuminated. Concurrently,to standardize results of global investigations of circulating mi RNAs and lnc RNAs biomarker studies,several recommendations for preanalytic considerations are put forward. In this review,we summarize the known circulating mi RNAs and lnc RNAs for GC diagnosis. The possible mechanism of mi RNA and lnc RNA secretion as well as methodologies for identification of circulating mi RNAs and lnc RNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening.
文摘Hepatocellular carcinoma(HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs(lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of m RNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.
文摘An overwhelming majority of the transcribed genome encodes for non-coding RNA(ncR NA) sequences. Deep sequencing of the transcriptome has uncovered tens of thousands of long ncR NA(lncR NA) sequences. However, little is known regarding the possible functions for a vast majority of these sequences. Among those lncR NAs whose function has been experimentally validated, most serve as regulators of gene expression. LncR NAs have been found to be critical to development and homeostasis and they have been implicated in several pathologies including cancer. Here, we examine the functions and underlying mechanisms of lnc RNAs in stem cells and in cancer biology, areas linked by the actions of lncR NAs.
文摘In China, hepatitis B virus (HBV) infection is the major cause of hepatocellular carcinoma (HCC), which is called HBV-related HCC (HBV-HCC), but the pathogenesis has not been clearly elu- cidated. Long non-coding RNAs (lncRNAs) have been paid increasing attention to, as an important regulatory molecule involved in many biological processes, as well as a variety of diseases. This study examined lncRNA that might play an important role in HBV-HCC pathogenesis by conducting lncRNA and mRNA profile comparison between HBV-HCC and normal liver tissues. The differentially ex- pressed lncRNA and mRNA profiles between HBV-HCC and normal liver tissues were analyzed by mi- croarrays. The potential protein-encoding gene regulated by lncRNA, and the biological function (gene ontology, pathway analysis) of the target gene were investigated. The results showed that the expression levels of lncRNA and mRNA in HBV-HCC tissues were different from those in normal liver tissues. As compared with normal liver tissue, 837 (4.30%) lncRNAs exhibited more than two-fold change (P〈0.05); 325 were up-regulated, and 512 were down-regulated; 991 (5.70%) mRNAs exhibited more than 2-fold change (P〈0.05); 733 were up-regulated and 258 were down-regulated in HBV-HCC tissue. Besides, there were 7 lncRNAs with above 10-fold elevation, 6 lncRNAs with above 10-fold decrease, 18 mRNAs with above 10-fold elevation and 11 mRNAs with above 10-fold decrease. 444 (53.05%) lncRNAs had their corresponding mRNAs, some of which were adjacent to lncRNAs. The biological analysis showed that the target gene of differentially expressed lncRNAs took part in the important bio- logical regulatory function. Target gene-related pathway analysis revealed the pathways in carcinoma and mitogen-activated protein kinase (MAPK) signaling pathways significantly changed in the HBV-HCC tissues as compared with normal liver tissues (P〈0.05). It was suggested that as compared with normal liver tissues, the expression of lncRNAs in HBV-HCC tissues changed significantly, and lncRNAs played a key role in the pathogenesis of HBV-HCC probably by mainly regulating the carci- noma-related signaling pathway and MAPK signaling pathways.
文摘Hepatocellular carcinoma(HCC) is one of the most common malignancies leading to high mortality rates in the general population and the sixth most common cancer worldwide. HCC is characterized by deregulation of multiple genes and signalling pathways. These genetic effects can involve both protein coding genes as well as non-coding RNA genes. Long noncoding RNAs(lnc RNAs) are transcripts longer than 200 nt, constituting a subpopulation of nc RNAs. Their biological effects are not well understood comparedto small non-coding RNA(micro RNAs), but they have been recently recognized to exert a crucial role in the regulation of gene expression and modulation of signalling pathways. Notably, several studies indicated that lnc RNAs contribute to the pathogenesis and progression of HCC. Investigating the molecular mechanisms underlying lnc RNAs expression opens potential applications in diagnosis and treatment of liver disease. This editorial provides three examples(MALAT-1 metastasis associated lung adenocarcinoma transcript, HULC highly upregulated in liver cancer and HOTAIR HOX transcript antisense intergenic RNA) of well-known lnc RNAs upregulated in HCC, whose mechanisms of action are known, and for which therapeutic applications are delineated. Targeting of lnc RNAs using several approaches(siR NA-mediated silencing or changing their secondary structure) offers new possibility to treat HCC.
基金financially supported by the National Natural Science Foundation of China,No.81371366(to HFW)Characteristic Innovation Project of Colleges and Universities in Guangdong Province of China,No.2018KTSCX075(to HFW)+3 种基金the Key Project of Social Development of Dongguan of China,No.20185071521640(to HFW)College Students’ Science and Technology Innovation Training Project,China,Nos.201810571058,GDMU2018024,GDMU2018056,GDMU2018061(to HFW)College Students’ Innovative Experimental Project in Guangdong Medical University,China,No.ZZDS001(to HFW)College Students’ Science and Technology Innovation Cultivation Project in Guangdong of China,No.pdjh2019b0217(to HFW)
文摘Long non-coding RNAs(lncRNAs)are abundantly expressed in the central nervous system and exert a critical role in gene regulation via multiple biological processes.To uncover the functional significance and molecular mechanisms of lncRNAs in spinal cord injury(SCI),the expression signatures of lncRNAs were profiled using RNA sequencing(RNA-seq)technology in a Sprague-Dawley rat model of the 10th thoracic vertebra complete transection SCI.Results showed that 116 of 14,802 detected lncRNAs were differentially expressed,among which 16—including eight up-regulated(H19,Vof16,Hmox2-ps1,LOC100910973,Ybx1-ps3,Nnat,Gcgr,LOC680254)and eight down-regulated(Rmrp,Terc,Ngrn,Ppp2r2b,Cox6a2,Rpl37a-ps1,LOC360231,Rpph1)—demonstrated fold changes>2 in response to transection SCI.A subset of these RNA-seq results was validated by quantitative real-time PCR.The levels of 821 mRNAs were also significantly altered post-SCI;592 mRNAs were up-regulated and 229 mRNAs were down-regulated by more than 2-fold.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses showed that differentially expressed mRNAs were related to GO biological processes and molecular functions such as injury and inflammation response,wound repair,and apoptosis,and were significantly enriched in 15 KEGG pathways,including cell phagocytosis,tumor necrosis factor alpha pathway,and leukocyte migration.Our results reveal the expression profiles of lncRNAs and mRNAs in the rat spinal cord of a complete transection model,and these differentially expressed lncRNAs and mRNAs represent potential novel targets for SCI treatment.We suggest that lncRNAs may play an important role in the early immuno-inflammatory response after spinal cord injury.This study was approved by the Administration Committee of Experimental Animals,Guangdong Province,China.
基金Grants from National Youthful Science Foundation of China,No.81101858 and No.81302147Youthful Science Foundation of Shandong Province of China,No.BS2013YY045
文摘Gastric cancer is the second leading cause of cancer-related deaths.Metastasis,which is an important element of gastric cancer,leads to a high mortality rate and to a poor prognosis.Gastric cancer metastasis has a complex progression that involves multiple biological processes.The comprehensive mechanisms of metastasis remain unclear,though traditional regulation modulates the molecular functions associated with metastasis.Long non-coding RNAs(lnc RNAs) have a role in different gene regulatory pathways by epigenetic modification and by transcriptional and post-transcription regulation.lnc RNAs participate in various diseases,including Alzheimer's disease,cardiovascular disease,and cancer.The altered expressions of certain lnc RNAs are linked to gastric cancer metastasis and invasion,as with tumor suppressor genes or oncogenes.Studies have partly elucidated the roles of lnc RNAs as biomarkers and in therapies,as well as their gene regulatory mechanisms.However,comprehensive knowledge regarding the functional mechanisms of gene regulation in metastatic gastric cancer remains scarce.To provide a theoretical basis for therapeutic intervention in metastatic gastric cancer,we reviewed the functions of lnc RNAs and their regulatory roles in gastric cancer metastasis.