BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno...BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.展开更多
AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected...AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected from patients with CC and ARC.Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression.Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs.RESULTS:Large amount of m6A peaks within lncRNA were identified for both CC and ARC,while the level was much higher in ARC(49870 peaks)than that in CC(18688 peaks),yet those difference between ARC in younger age group(ARC-1)and ARC in elder age group(ARC-2)was quite slight.A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs,as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC.On the other hand,5893 hypermethylated and 5213 hypomethylated lncRNAs,as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1.Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles,as well as nucleotide excision repair.CONCLUSION:Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC,providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.展开更多
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs...The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.展开更多
Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expr...Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.展开更多
BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become anoth...BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become another research hot spot in the DN field.AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3(Pdia3)could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism.METHODS Using normal glucose or high glucose(HG)-cultured podocytes,the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress(ERS)were explored.LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction.Relative cell viability was detected through the cell counting kit-8 colorimetric assay.The podocyte apoptosis rate in each group was measured through flow cytometry.The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay.Finally,western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p.RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes.Next,lncRNA Pdia3 was involved in HG-induced podocyte apoptosis.Furthermore,the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p.LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes.CONCLUSION Taken together,this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p,which might provide a potential therapeutic target for DN.展开更多
BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary...BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.展开更多
Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the...Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns,across different neurodegenerative diseases.However,the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood.This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles,regulatory mechanisms,and research status of lncRNAs in Alzheimer's disease,Parkinson's disease,Huntington's disease,and amyotrophic lateral sclerosis.Finally,this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases,hoping to provide broader implications for developing effective treatments.展开更多
Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-t...Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.展开更多
BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and ...BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.展开更多
BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in t...BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in tumor progression.CASC19 is a new bio-marker which can promote tumor invasion and metastasis.However,the mechanism by which CASC19 affects the progression of GC through miRNA is not clear.AIM To explore the role of the CASC19/miR-491-5p/HMGA2 regulatory axis in GC.METHODS To explore the expression and prognosis of CASC19 in GC through clinical samples,and investigate the effects of inhibiting CASC19 on the proliferation,migration,invasion and other functions of GC cells through cell counting Kit-8(CCK-8),ethynyldeoxyuridine,Wound healing assay,Transwell,Western blot and flow cytometry experiments.The effect of miR-491-5p and HMGA2 in GC were also proved.The regulatory relationship between CASC19 and miR-491-5p,miR-491-5p and HMGA2 were validated through Dual-luciferase reporter gene assay and reverse transcription PCR.Then CCK-8,Transwell,Wound healing assay,flow cytometry and animal experiments verify the role of CASC19/miR-491-5p/HMGA2 regulatory axis.RESULTS The expression level of CASC19 is related to the T stage,N stage,and tumor size of patients.Knockdown of the expression of CASC19 can inhibit the ability of proliferation,migration,invasion and EMT conversion of GC cells,and knocking down the expression of CASC19 can promote the apoptosis of GC cells.Increasing the expression of miR-491-5p can inhibit the proliferation of GC cells,miR-491-5p mimics can inhibit EMT conversion,and promote the apoptosis of GC cells,while decreasing the expression of miR-491-5p can promote the proliferation and EMT conversion and inhibit the apoptosis of GC cells.The expression of HMGA2 in GC tissues is higher than that in adjacent tissues.At the same time,the expression level of HMGA2 is related to the N and T stages of the patients.Reducing the level of HMGA2 can promote cell apoptosis and inhibit the proliferation of GC cells.Cell experiments and animal experiments have proved that CASC19 can regulates the expression of HMGA2 through miR-491-5p,thereby affecting the biological functions of GC.CONCLUSION CASC19 regulates the expression of HMGA2 through miR-491-5p to affect the development of GC.This axis may serve as a potential biomarker and therapeutic target of GC.展开更多
BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promi...BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promise in gastric cancer.Its effects include promoting cell apoptosis,curtailing tumor angiogenesis,and enhancing sensitivity to radiation and chemotherapy.Long noncoding RNAs(lncRNAs)have garnered significant attention as biomarkers for early screening,diagnosis,treatment,and drug response because of their remarkable specificity and sensitivity.Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis,clinical staging,metastasis,drug sensitivity,and prognosis in gastric cancer.A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer develop-ment can provide novel insights for precision treatment and tailored management of patients with gastric cancer.This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregu-lating specific lncRNAs and modulating gastric cancer onset and progression.AIM To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis,proliferation,and invasion.Furthermore,these findings were validated in clinical samples.METHODS The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation,flow cytometry to investigate its effects on apoptosis,and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells.Western blotting was used to gauge changes in the protein expression levels of CDK6,CDK4,Bax,Bcl-2,caspase-3,P65,and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment.Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction(qRT-PCR)in BGC-823 and MGC-803 cells.AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis,proliferation,migration,and invasion of gastric cancer cells.Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways.RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics.RESULTS Curcumin induced apoptosis and hindered proliferation,migration,and invasion of gastric cancer cells in a dose-and time-dependent manner.LncRNA AC022424.2 was upregulated after curcumin treatment,and its knockdown enhanced cancer cell aggressiveness.LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways.LncRNA AC022424.2 downregulation was correlated with lymph node metastasis,making it a potential diagnostic and prognostic marker.CONCLUSION Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2.This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation.The results of this study enhance our understanding of gastric cancer development and precision treatment.展开更多
This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivo...This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.展开更多
Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect du...Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.展开更多
BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 p...BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.展开更多
BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found t...BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues,but its role in HCC progression is unclear.Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes.AIM To study the role of ultrasound microbubbles(UTMBs)mediated HAND2-AS1 in the progression of HCC,in order to provide a new reference for the treatment of HCC.METHODS In vitro,we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs,and detected cell proliferation,apoptosis,invasion and epithelial-mesenchymal transition(EMT)by cell counting kit-8 assay,flow cytometry,Transwell invasion assay and Western blotting,respectively.In addition,we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior.Next,the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2(TIMP2)overexpression vector,and we detected cell proliferation,apoptosis,invasion and EMT.In vivo,we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability.RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation,invasion,and EMT,encouraged apoptosis,and HAND2-AS1 silencing eliminated the effect of UTMBs.Additionally,miR-873-5p targets the gene HAND2-AS1,which also targets the 3’UTR of TIMP2.And miR-873-5p mimic counteracted the impact of HAND2-AS1.Further,miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs.We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase(MMP)2/MMP9.In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice.CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.展开更多
Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identifi...Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.展开更多
文摘BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.
基金Supported by the National Natural Science Foundation of China(No.82171069No.82371070)+3 种基金Shanghai Science and Technology Committee(No.22015820200)Shanghai Municipal Health Commission Innovative Medical Device Application Demonstration Project(No.23SHS03500-03)Project of Shanghai Municipal Commission of Health and Family Planning(No.202140224)Grants from Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2021QN52).
文摘AIM:To characterize the N6-methyladenosine(m6A)modification patterns in long non-coding RNAs(lncRNAs)in sporadic congenital cataract(CC)and age-related cataract(ARC).METHODS:Anterior capsule of the lens were collected from patients with CC and ARC.Methylated RNA immunoprecipitation with next-generation sequencing and RNA sequencing were performed to identify m6A-tagged lncRNAs and lncRNAs expression.Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and Gene Ontology annotation were used to predict potential functions of the m6A-lncRNAs.RESULTS:Large amount of m6A peaks within lncRNA were identified for both CC and ARC,while the level was much higher in ARC(49870 peaks)than that in CC(18688 peaks),yet those difference between ARC in younger age group(ARC-1)and ARC in elder age group(ARC-2)was quite slight.A total of 1305 hypermethylated and 1178 hypomethylated lncRNAs,as well as 182 differential expressed lncRNAs were exhibited in ARC compared with CC.On the other hand,5893 hypermethylated and 5213 hypomethylated lncRNAs,as well as 155 significantly altered lncRNA were identified in ARC-2 compared with ARC-1.Altered lncRNAs in ARC were mainly associated with the organization and biogenesis of intracellular organelles,as well as nucleotide excision repair.CONCLUSION:Our results for the first time present an overview of the m6A methylomes of lncRNA in CC and ARC,providing a solid basis and uncovering a new insight to reveal the potential pathogenic mechanism of CC and ARC.
基金Supported by National Natural Science Foundation of China,No.82170593,No.81700503the National Key Research and Development Program of China,No.2021YFC2700802.
文摘The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
基金Supported by the National Natural Science Foundation of China,No.81472782National Clinical Key Specialty Department(Oncology)of China,No.YWC-ZKJS-2023-01Research Fund of Yili Institute of Clinical Medicine,No.yl2021ms02.
文摘Long non-coding RNAs(lncRNAs),with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity,have been found to impact colorectal cancer(CRC)through various biological processes.LncRNA expression can regulate autophagy,which plays dual roles in the initiation and progression of cancers,including CRC.Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.Moreover,it has been confirmed that targeting autophagy through lncRNA regulation could be a viable approach for combating chemoresistance.Two recent studies titled“Human β-defensin-1 affects the mammalian target of rapamycin pathway and autophagy in colon cancer cells through long non-coding RNA TCONS_00014506”and“Upregulated lncRNA PRNT promotes progression and oxaliplatin resistance of colorectal cancer cells by regulating HIPK2 transcription”revealed novel insights into lncRNAs associated with autophagy and oxaliplatin resistance in CRC,respectively.In this editorial,we particularly focus on the regulatory role of lncRNAs in CRC-related autophagy and chemoresistance since the regulation of chemotherapeutic sensitivity by intervening with the lncRNAs involved in the autophagy process has become a promising new approach for cancer treatment.
基金Supported by the Natural Science Funds for Young Scholar of Hebei,China,No.H2020206108the Subject of Health Commission of Hebei,China,No.20210151.
文摘BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become another research hot spot in the DN field.AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3(Pdia3)could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism.METHODS Using normal glucose or high glucose(HG)-cultured podocytes,the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress(ERS)were explored.LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction.Relative cell viability was detected through the cell counting kit-8 colorimetric assay.The podocyte apoptosis rate in each group was measured through flow cytometry.The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay.Finally,western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p.RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes.Next,lncRNA Pdia3 was involved in HG-induced podocyte apoptosis.Furthermore,the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p.LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes.CONCLUSION Taken together,this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p,which might provide a potential therapeutic target for DN.
基金Supported by Innovative Team of Jiangsu Province,No.CXTDA2017042Jiangsu Provincial Medical Youth Talent,No.QNRC2016508In-Hospital Project of Taizhou People's Hospital,No.ZL201930.
文摘BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.
基金supported by the National Natural Science Foundation of China,Nos.91649119 and 92049105(both to JL)。
文摘Recently,with the advent of high-resolution and high-throughput sequencing technologies,an increasing number of long non-coding RNAs(lncRNAs)have been found to be involved in the regulation of neuronal function in the central nervous system with specific spatiotemporal patterns,across different neurodegenerative diseases.However,the underlying mechanisms of lncRNAs during neurodegeneration remain poorly understood.This review provides an overview of the current knowledge of the biology of lncRNAs and focuses on introducing the latest identified roles,regulatory mechanisms,and research status of lncRNAs in Alzheimer's disease,Parkinson's disease,Huntington's disease,and amyotrophic lateral sclerosis.Finally,this review discusses the potential values of lncRNAs as diagnostic biomarkers and therapeutic targets for neurodegenerative diseases,hoping to provide broader implications for developing effective treatments.
基金supported by the Medical Science and Technology Research Foundation of Guangdong Province(No.A2020559).
文摘Objective This study aimed to examine the role of long non-coding RNA PCED1B antisense RNA 1(PCED1B-AS1)in the development of hepatocellular carcinoma(HCC).Methods A total of 62 pairs of HCC tissues and adjacent non-tumor tissues were obtained from 62 HCC patients.The interactions of PCED1B-AS1 and microRNA-34a(miR-34a)were detected by dual luciferase activity assay and RNA pull-down assay.The RNA expression levels of PCED1B-AS1,miR-34a and CD44 were detected by RT-qPCR,and the protein expression level of CD44 was determined by Western blotting.The cell proliferation was detected by cell proliferation assay,and the cell invasion and migration by transwell invasion assay.The HCC tumor growth after PCED1B-AS1 was downregulated was determined by in vivo animal study.Results PCED1B-AS1 was highly expressed in HCC tissues,which was associated with poor survival of HCC patients.Furthermore,PCED1B-AS1 interacted with miR-34a in HCC cells,but they did not regulate the expression of each other.Additionally,PCED1B-AS1 increased the expression level of CD44,which was targeted by miR-34a.The cell proliferation and invasion assay revealed that miR-34a inhibited the proliferation and invasion of HCC in vitro,while CD44 exhibited the opposite effects.Furthermore,PCED1B-AS1 suppressed the role of miR-34a.Moreover,the knockdown of PCED1B-AS1 repressed the HCC tumor growth in nude mice in vivo.Conclusion PCED1B-AS1 may play an oncogenic role by regulating the miR-34a/CD44 axis in HCC.
基金Supported by The Scientific Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission Administration of Traditional Chinese Medicine,No.2021010 and No.2023166Xiao-Ping Chen Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH122002-073.
文摘BACKGROUND China's most frequent malignancy is gastric cancer(GC),which has a very poor survival rate,and the survival rate for patients with advanced GC is dismal.Pyroptosis has been connected to the genesis and development of cancer.The function of pyroptosis-related long non-coding RNAs(PRLs)in GC,on the other hand,remains uncertain.AIM To explore the construction and comprehensive analysis of the prognostic characteristics of long non-coding RNA(lncRNA)related to pyroptosis in GC patients.METHODS The TCGA database provided us with 352 stomach adenocarcinoma samples,and we obtained 28 pyroptotic genes from the Reactome database.We examined the correlation between lncRNAs and pyroptosis using the Pearson correlation coefficient.Prognosis-related PRLs were identified through univariate Cox analysis.A predictive signature was constructed using stepwise Cox regression analysis,and its reliability and independence were assessed.To facilitate clinical application,a nomogram was created based on this signature.we analyzed differences in immune cell infiltration,immune function,and checkpoints between the high-risk group(HRG)and low-risk group(LRG).RESULTS Five hundred and twenty-three PRLs were screened from all lncRNAs(absolute correlation coefficient>0.4,P<0.05).Nine PRLs were included in the risk prediction signature that was created through stepwise Cox regression analysis.We determined the risk score for GC patients and employed the median value as the dividing line between HRG and LRG.The ability of the risk signature to predict the overall survival(OS)of GC is demonstrated by the Kaplan-Meier analysis,risk curve,receiver operating characteristic curve,and decision curve analysis curve.The risk signature was shown to be an independent prognostic factor for OS in both univariate and multivariate Cox regression analyses.HRG showed a more efficient local immune response or modulation compared to LRG,as indicated by the predicted signal pathway analysis and examination of immune cell infiltration,function,and checkpoints(P<0.05).CONCLUSION In general,we have created a brand-new prognostic signature using PRLs,which may provide ideas for immunotherapy in patients with GC.
基金Supported by Natural Science Foundation of Anhui Province,No.2108085QH337Research Fund of Anhui Medical University,No.2022xkj156+1 种基金Key Projects of Anhui Provincial Department of Education,No.2023AH053330Anhui Institute of Translational Medicine Research Fund,No.2022zhyx-C88.
文摘BACKGROUND Gastric cancer(GC)is a common malignant tumor,long non-coding RNA and microRNA(miRNA)are important regulators that affect tumor proliferation,metastasis and chemotherapy resistance,and thus participate in tumor progression.CASC19 is a new bio-marker which can promote tumor invasion and metastasis.However,the mechanism by which CASC19 affects the progression of GC through miRNA is not clear.AIM To explore the role of the CASC19/miR-491-5p/HMGA2 regulatory axis in GC.METHODS To explore the expression and prognosis of CASC19 in GC through clinical samples,and investigate the effects of inhibiting CASC19 on the proliferation,migration,invasion and other functions of GC cells through cell counting Kit-8(CCK-8),ethynyldeoxyuridine,Wound healing assay,Transwell,Western blot and flow cytometry experiments.The effect of miR-491-5p and HMGA2 in GC were also proved.The regulatory relationship between CASC19 and miR-491-5p,miR-491-5p and HMGA2 were validated through Dual-luciferase reporter gene assay and reverse transcription PCR.Then CCK-8,Transwell,Wound healing assay,flow cytometry and animal experiments verify the role of CASC19/miR-491-5p/HMGA2 regulatory axis.RESULTS The expression level of CASC19 is related to the T stage,N stage,and tumor size of patients.Knockdown of the expression of CASC19 can inhibit the ability of proliferation,migration,invasion and EMT conversion of GC cells,and knocking down the expression of CASC19 can promote the apoptosis of GC cells.Increasing the expression of miR-491-5p can inhibit the proliferation of GC cells,miR-491-5p mimics can inhibit EMT conversion,and promote the apoptosis of GC cells,while decreasing the expression of miR-491-5p can promote the proliferation and EMT conversion and inhibit the apoptosis of GC cells.The expression of HMGA2 in GC tissues is higher than that in adjacent tissues.At the same time,the expression level of HMGA2 is related to the N and T stages of the patients.Reducing the level of HMGA2 can promote cell apoptosis and inhibit the proliferation of GC cells.Cell experiments and animal experiments have proved that CASC19 can regulates the expression of HMGA2 through miR-491-5p,thereby affecting the biological functions of GC.CONCLUSION CASC19 regulates the expression of HMGA2 through miR-491-5p to affect the development of GC.This axis may serve as a potential biomarker and therapeutic target of GC.
基金Supported by the Natural Science Foundation of Gansu Province,China,No.20JR5RA356 and No.22JR5RA511the Lanzhou City Chengguan District Science and Technology Planning Project,No.2016-7-17.
文摘BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promise in gastric cancer.Its effects include promoting cell apoptosis,curtailing tumor angiogenesis,and enhancing sensitivity to radiation and chemotherapy.Long noncoding RNAs(lncRNAs)have garnered significant attention as biomarkers for early screening,diagnosis,treatment,and drug response because of their remarkable specificity and sensitivity.Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis,clinical staging,metastasis,drug sensitivity,and prognosis in gastric cancer.A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer develop-ment can provide novel insights for precision treatment and tailored management of patients with gastric cancer.This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregu-lating specific lncRNAs and modulating gastric cancer onset and progression.AIM To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis,proliferation,and invasion.Furthermore,these findings were validated in clinical samples.METHODS The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation,flow cytometry to investigate its effects on apoptosis,and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells.Western blotting was used to gauge changes in the protein expression levels of CDK6,CDK4,Bax,Bcl-2,caspase-3,P65,and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment.Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction(qRT-PCR)in BGC-823 and MGC-803 cells.AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis,proliferation,migration,and invasion of gastric cancer cells.Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways.RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics.RESULTS Curcumin induced apoptosis and hindered proliferation,migration,and invasion of gastric cancer cells in a dose-and time-dependent manner.LncRNA AC022424.2 was upregulated after curcumin treatment,and its knockdown enhanced cancer cell aggressiveness.LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways.LncRNA AC022424.2 downregulation was correlated with lymph node metastasis,making it a potential diagnostic and prognostic marker.CONCLUSION Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2.This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation.The results of this study enhance our understanding of gastric cancer development and precision treatment.
文摘This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.
基金The National Key R&D Program of China(Key Special Project for Marine Environmental Security and Sustainable Development of Coral Reefs 2022-3.3),No.2022YFC3103-004001Scientific Research Foundation of Shanghai Municipal Health Commission of Changning District,No.20234Y038.
文摘Hepatocellular carcinoma(HCC)presents challenges due to its high recurrence and metastasis rates and poor prognosis.While current clinical diagnostic and prognostic indicators exist,their accuracy remains imperfect due to their biol-ogical complexity.Therefore,there is a quest to identify improved biomarkers for HCC diagnosis and prognosis.By combining long non-coding RNA(lncRNA)expression and somatic mutations,Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability(GI),forming a GI-derived lncRNA signature(LncSig).This signature outperforms previously re-ported LncSig and TP53 mutations in predicting HCC prognosis.In this editorial,we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost,time,and practicability.Additionally,we provide an overview of various prognostic models for HCC,aiding in a comprehensive understanding of research progress in pro-gnostic evaluation methods.
基金Natural Science Foundation of Shandong Province,No.ZR2020MH207 and No.ZR2020MH251.
文摘BACKGROUND Through experimental research on the biological function of GATA6-AS1,it was confirmed that GATA6-AS1 can inhibit the proliferation,invasion,and migration of gastric cancer cells,suggesting that GATA6-AS1 plays a role as an anti-oncogene in the occurrence and development of gastric cancer.Further experi-ments confirmed that the overexpression of fat mass and obesity-associated protein(FTO)inhibited the expression of GATA6-AS1,thereby promoting the occurrence and development of gastric cancer.AIM To investigate the effects of GATA6-AS1 on the proliferation,invasion and migration of gastric cancer cells and its mechanism of action.METHODS We used bioinformatics methods to analyze the Cancer Genome Atlas(https://portal.gdc.cancer.gov/.The Cancer Genome Atlas)and download expression data for GATA6-AS1 in gastric cancer tissue and normal tissue.We also constructed a GATA6-AS1 lentivirus overexpression vector which was transfected into gastric cancer cells to investigate its effects on proliferation,migration and invasion,and thereby clarify the expression of GATA6-AS1 in gastric cancer and its biological role in the genesis and development of gastric cancer.Next,we used a database(http://starbase.sysu.edu.cn/starbase2/)to analysis GATA6-AS1 whether by m6A methylation modify regulation and predict the methyltransferases that may methylate GATA6-AS1.Furthermore,RNA immunoprecipitation experiments confirmed that GATA6-AS1 was able to bind to the m6A methylation modification enzyme.These data allowed us to clarify the ability of m6A methylase to influence the action of GATA6-AS1 and its role in the occurrence and development of gastric cancer.RESULTS Low expression levels of GATA6-AS1 were detected in gastric cancer.We also determined the effects of GATA6-AS1 overexpression on the biological function of gastric cancer cells.GATA6-AS1 had strong binding ability with the m6A demethylase FTO,which was expressed at high levels in gastric cancer and negatively correlated with the expression of GATA6-AS1.Following transfection with siRNA to knock down the expression of FTO,the expression levels of GATA6-AS1 were up-regulated.Finally,the proliferation,migration and invasion of gastric cancer cells were all inhibited following the knockdown of FTO expression.CONCLUSION During the occurrence and development of gastric cancer,the overexpression of FTO may inhibit the expression of GATA6-AS1,thus promoting the proliferation and metastasis of gastric cancer.
文摘BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues,but its role in HCC progression is unclear.Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes.AIM To study the role of ultrasound microbubbles(UTMBs)mediated HAND2-AS1 in the progression of HCC,in order to provide a new reference for the treatment of HCC.METHODS In vitro,we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs,and detected cell proliferation,apoptosis,invasion and epithelial-mesenchymal transition(EMT)by cell counting kit-8 assay,flow cytometry,Transwell invasion assay and Western blotting,respectively.In addition,we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior.Next,the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2(TIMP2)overexpression vector,and we detected cell proliferation,apoptosis,invasion and EMT.In vivo,we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability.RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation,invasion,and EMT,encouraged apoptosis,and HAND2-AS1 silencing eliminated the effect of UTMBs.Additionally,miR-873-5p targets the gene HAND2-AS1,which also targets the 3’UTR of TIMP2.And miR-873-5p mimic counteracted the impact of HAND2-AS1.Further,miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs.We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase(MMP)2/MMP9.In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice.CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.
文摘Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.