BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno...BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.展开更多
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs...The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.展开更多
BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found t...BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues,but its role in HCC progression is unclear.Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes.AIM To study the role of ultrasound microbubbles(UTMBs)mediated HAND2-AS1 in the progression of HCC,in order to provide a new reference for the treatment of HCC.METHODS In vitro,we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs,and detected cell proliferation,apoptosis,invasion and epithelial-mesenchymal transition(EMT)by cell counting kit-8 assay,flow cytometry,Transwell invasion assay and Western blotting,respectively.In addition,we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior.Next,the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2(TIMP2)overexpression vector,and we detected cell proliferation,apoptosis,invasion and EMT.In vivo,we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability.RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation,invasion,and EMT,encouraged apoptosis,and HAND2-AS1 silencing eliminated the effect of UTMBs.Additionally,miR-873-5p targets the gene HAND2-AS1,which also targets the 3’UTR of TIMP2.And miR-873-5p mimic counteracted the impact of HAND2-AS1.Further,miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs.We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase(MMP)2/MMP9.In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice.CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.展开更多
This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivo...This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.展开更多
BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become anoth...BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become another research hot spot in the DN field.AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3(Pdia3)could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism.METHODS Using normal glucose or high glucose(HG)-cultured podocytes,the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress(ERS)were explored.LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction.Relative cell viability was detected through the cell counting kit-8 colorimetric assay.The podocyte apoptosis rate in each group was measured through flow cytometry.The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay.Finally,western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p.RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes.Next,lncRNA Pdia3 was involved in HG-induced podocyte apoptosis.Furthermore,the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p.LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes.CONCLUSION Taken together,this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p,which might provide a potential therapeutic target for DN.展开更多
Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer bi...Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.展开更多
BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promi...BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promise in gastric cancer.Its effects include promoting cell apoptosis,curtailing tumor angiogenesis,and enhancing sensitivity to radiation and chemotherapy.Long noncoding RNAs(lncRNAs)have garnered significant attention as biomarkers for early screening,diagnosis,treatment,and drug response because of their remarkable specificity and sensitivity.Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis,clinical staging,metastasis,drug sensitivity,and prognosis in gastric cancer.A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer develop-ment can provide novel insights for precision treatment and tailored management of patients with gastric cancer.This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregu-lating specific lncRNAs and modulating gastric cancer onset and progression.AIM To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis,proliferation,and invasion.Furthermore,these findings were validated in clinical samples.METHODS The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation,flow cytometry to investigate its effects on apoptosis,and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells.Western blotting was used to gauge changes in the protein expression levels of CDK6,CDK4,Bax,Bcl-2,caspase-3,P65,and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment.Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction(qRT-PCR)in BGC-823 and MGC-803 cells.AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis,proliferation,migration,and invasion of gastric cancer cells.Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways.RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics.RESULTS Curcumin induced apoptosis and hindered proliferation,migration,and invasion of gastric cancer cells in a dose-and time-dependent manner.LncRNA AC022424.2 was upregulated after curcumin treatment,and its knockdown enhanced cancer cell aggressiveness.LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways.LncRNA AC022424.2 downregulation was correlated with lymph node metastasis,making it a potential diagnostic and prognostic marker.CONCLUSION Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2.This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation.The results of this study enhance our understanding of gastric cancer development and precision treatment.展开更多
Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identifi...Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.展开更多
Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,...Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.展开更多
Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection,obesity,or excessive alcohol.It is a dynamic and reversible process characterized by the activation of hepa...Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection,obesity,or excessive alcohol.It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix.Advanced fibrosis could lead to cirrhosis and even liver cancer,which has become a significant health burden worldwide.Many studies have revealed that noncoding RNAs(ncRNAs),including microRNAs,long noncoding RNAs and circular RNAs,are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-βpathway,phosphatidylinositol 3-kinase/protein kinase B pathway,and Wnt/β-catenin pathway.NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis.NcRNAs mimics,ncRNAs in mesenchymal stem cell-derived exosomes,and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis.In this review,we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis,and discuss the potentials and challenges to use these ncRNAs for diagnosis,staging and treatment of liver fibrosis.All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.展开更多
Objective This meta-analysis explored whether the expression of actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)is related to the prognosis and clinicopathological features of patients with cancer.Method...Objective This meta-analysis explored whether the expression of actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)is related to the prognosis and clinicopathological features of patients with cancer.Methods PubMed,EMBASE,and Cochrane Library were systematically searched.Hazard ratios(HRs)with 95%confidence intervals(CIs)were used to assess the prognostic value based on overall survival(OS),disease-free survival(DFS),and progression-free survival(PFS).Odds ratios(ORs)with 95%CIs were used to determine the relationships between AFAP1-AS1 and clinicopathological features,such as large tumor size(LTS),high tumor stage(HTS),poor histological grade(PHG),lymph node metastasis(LNM),and distant metastasis(DM).Results Thirty-five eligible articles and 3433 cases were analyzed.High AFAP1-AS1 expression,compared to low AFAP1-AS1 expression,correlated with significantly shorter OS(HR=2.15,95%CI=1.97-2.34,P<0.001),DFS(HR=1.37,95%CI=1.19-1.57,P<0.001),and PFS(HR=1.97,95%CI=1.56-2.50,P<0.001)in patients with cancer.In various cancers,elevated AFAP1-AS1 expression was significantly associated with LTS(OR=2.76,95%CI=2.16-3.53,P<0.001),HTS(OR=2.23,95%CI=1.83-2.71,P<0.001),and PHG(OR=1.39,95%CI=1.08-1.79,P=0.01)but not LNM(OR=1.59,95%CI=0.88-2.85,P=0.12)or DM(OR=1.81,95%CI=0.90-3.66,P=0.10).Conclusion High AFAP1-AS1 expression was associated with prognostic and clinicopathological features,suggesting that AFAP1-AS1 is a prognostic biomarker for human cancers.展开更多
AIM: To study the expression of long noncoding RNAs(lncRNAs) in hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).METHODS: The lncRNA profiles between HBV-related HCC tissues and corresponding normal liver ...AIM: To study the expression of long noncoding RNAs(lncRNAs) in hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).METHODS: The lncRNA profiles between HBV-related HCC tissues and corresponding normal liver tissues were generated using microarray analysis. Datasets were analyzed using multiple algorithms to depict alterations in gene expression on the basis of gene ontology(GO), pathway analysis, and lncRNA levels.RESULTS: The microarray revealed that 1772 lncRNAs and 2508 mRNAs were differently expressed. The pathway analysis demonstrated that the cell cycle, cytokinecytokine receptor interaction, chemokine signaling pathway, and phosphoinositide 3-kinase-protein kinase B signaling pathway may play important roles in HCC.Several GO terms, such as cell cycle, DNA replication,immune response, and signal transduction, were enriched in gene lists, suggesting a potential correlation with HBVrelated HCC. The upregulated large intergenic noncoding RNA ULK4P2 was physically combined with enhancer of zeste homolog 2. Therefore, the lncRNAs may participate in regulating HBV-related HCC.CONCLUSION: lncRNAs play important roles in HCC,future studies should verify whether large intergenic noncoding ULK4P2 functions by combining with enhancer of zeste homolog 2 in HCC.展开更多
BACKGROUND Colorectal cancer(CRC)is one of the most prevalent tumors worldwide.Recently,long noncoding RNAs(lncRNAs)have been shown to influence tumorigenesis and tumor progression by acting as competing endogenous RN...BACKGROUND Colorectal cancer(CRC)is one of the most prevalent tumors worldwide.Recently,long noncoding RNAs(lncRNAs)have been shown to influence tumorigenesis and tumor progression by acting as competing endogenous RNAs(ceRNAs).It is difficult to extract prognostic lncRNAs and useful bioinformation from most ceRNA networks constructed previously.AIM To construct a prognostic related ceRNA regulatory network and lncRNA related signature based on risk score in CRC.METHODS RNA transcriptome profile and clinical information of 506 CRC patients were downloaded from the Cancer Genome Atlas database.R packages and Perl program were used for data processing.Cox regression analysis was used for prognostic model construction.Quantitative real-time polymerase chain reaction was used to detect the expression of lncRNAs.RESULTS A prognostic-related ceRNA network was constructed,including 9 lncRNAs,44 mRNAs,and 30 miRNAs.In addition,a four-lncRNA model was constructed using multivariate Cox regression analysis,which could be an independent prognostic model in CRC.The risk score for each patient was calculated,and the 506 patients were divided into high and low-risk groups(253 for each group)based on the median risk score.The results of the survival analysis showed that patients with a high-risk score had a poor survival rate.Furthermore,the predictive value of the four-lncRNA model was evaluated in GSE38832.Patient survival probabilities could be better predicted when combing the risk score and clinical features.Gene Set Enrichment Analysis results verified that a number of cancer-related signaling pathways were enriched with a high-risk score in CRC.Finally,we validated a novel lncRNA(LINC00488)using quantitative real-time polymerase chain reaction in 22 paired CRC patient tumor tissues compared to adjacent non-tumor tissues.CONCLUSION The four-lncRNA model could give better predictive value for CRC patients.Our understanding of the lncRNA-related ceRNA regulatory mechanism could provide a potential diagnostic indicator for CRC patients.展开更多
Long noncoding RNAs(lnc RNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lnc RNAs are involved in regulating a variety of biological pr...Long noncoding RNAs(lnc RNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lnc RNAs are involved in regulating a variety of biological processes, including immune, cancer, stress, development and differentiation at the transcriptional, epigenetic or post-transcriptional levels. Here, we review the role of lnc RNAs in the process of neurodevelopment, neural differentiation, synaptic function, and pathogenesis of Parkinson’s disease(PD). These pathomechanisms include protein misfolding and aggregation, disordered protein degradation, mitochondrial dysfunction, oxidative stress, autophagy, apoptosis, and neuroinflammation. This information will provide the basis of lnc RNA-based disease diagnosis and drug treatment for PD.展开更多
Hepatocellular carcinoma(HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs(lnc RNAs) are differentially expressed in HCC and implic...Hepatocellular carcinoma(HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs(lnc RNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncR NAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncR NAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncR NAs in HCC are still deficient, an improved understanding of the roles played by lncR NAs in HCC will lead to a much more effective utilization of those lnc RNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.展开更多
Long noncoding RNA(lncRNA)regulates the proliferation and migration of human retinal endothelial cells,as well as retinal neovascularization in diabetic retinopathy.Based on similarities between the pathogenesis of re...Long noncoding RNA(lncRNA)regulates the proliferation and migration of human retinal endothelial cells,as well as retinal neovascularization in diabetic retinopathy.Based on similarities between the pathogenesis of retinopathy of prematurity(ROP)and diabetic retinopathy,lncRNA may also play a role in ROP.Seven-day-old mice were administered 75±2% oxygen for 5 days and normoxic air for another 5 days to establish a ROP model.Expression of lncRNA and mRNA in the retinal tissue of mice was detected by high-throughput sequencing technology,and biological functions of the resulted differentially expressed RNAs were evaluated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The results showed that compared with the control group,57 lncRNAs were differentially expressed,including 43 upregulated and 14 downregulated,in the retinal tissue of ROP mice.Compared with control mice,42 mRNAs were differentially expressed in the retinal tissue of ROP mice,including 24 upregulated and 18 downregulated mRNAs.Differentially expressed genes were involved in ocular development and related metabolic pathways.The differentially expressed lncRNAs may regulate ROP in mice via microRNAs and multiple signaling pathways.Our results revealed that these differentially expressed lncRNAs may be therapeutic targets for ROP treatment.This study was approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University on February 25,2016(approval No.2016PS074K).展开更多
Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis,which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells(MSCs).Mounting evidence...Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis,which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells(MSCs).Mounting evidence indicates that a disturbance of bone homeostasis can trigger degenerative bone diseases,including osteoporosis and osteoarthritis.In addition to conventional genetic modifications,epigenetic modifications(i.e.,DNA methylation,histone modifications,and the expression of noncoding RNAs)are considered to be contributing factors that affect bone homeostasis.Long noncoding RNAs(lncRNAs)were previously regarded as‘transcriptional noise’with no biological functions.However,substantial evidence suggests that lncRNAs have roles in the epigenetic regulation of biological processes in MSCs and related diseases.In this review,we summarized the interactions between lncRNAs and epigenetic modifiers associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis of degenerative bone diseases and highlighted promising lncRNA-based diagnostic and therapeutic targets for bone diseases.展开更多
BACKGROUND Tumor recurrence and metastasis lead to a poor prognosis in colorectal cancer(CRC).Necroptosis is closely related to the tumor microenvironment(TME)and affects tumor recurrence and metastasis.We aimed to st...BACKGROUND Tumor recurrence and metastasis lead to a poor prognosis in colorectal cancer(CRC).Necroptosis is closely related to the tumor microenvironment(TME)and affects tumor recurrence and metastasis.We aimed to stratify CRC patients according to necroptosis-related long noncoding RNAs(lncRNAs),which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs.AIM To stratify CRC patients according to necroptosis-related lncRNAs(NRLs),which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs.METHODS LncRNA expression profiles were collected from The Cancer Genome Atlas.NRLs were identified by coexpression analysis.Cox regression analysis identified a NRL signature.Then,the value of this signature was comprehensively and multidimensionally evaluated,and its reliability for CRC prognosis prediction was assessed with clinical CRC data and compared with that of six other lncRNA were also performed according to the risk score(RS)of the signature.RESULTS An 8-lncRNA signature significantly associated with overall survival(OS)was constructed,and its reliability was validated with clinical CRC data.Most of the areas under the receiver operating characteristic curves(AUCs)values for 1-,3-and 5-year OS for this signature were higher than those for the other six lncRNA signatures.OS,disease-specific survival and the progression-free interval were all significantly poorer in the high-risk group.The RS of the signature showed good concordance with the predicted prognosis,with AUCs for 1-,3-and 5-year OS of 0.79,0.81 and 0.77,respectively.Additionally,the calibration plots for this signature combined with clinical factors showed that this combination could effectively improve the ability to predict OS.The RS was correlated with tumor stage,lymph node metastasis and distant metastasis.Most of the enriched Kyoto Encyclopedia of Genes and Genomes and Gene Ontology terms were tumor metastasis-related pathways in the high-risk group;these patients showed greater infiltration of immunosuppressive cells,such as cancer-associated fibroblasts,hematopoietic stem cells and M2 macrophages,but less infiltration of infiltrating antitumor effector immune cells,such as cluster of differentiation 8+T cells and regulatory T cells(Tregs).We explored additional potential immune checkpoint genes and potential immunotherapeutic and chemotherapeutic drugs with relatively low IC_(50) values.CONCLUSION We identified an NRL signature with strong fidelity that could stably predict prognosis and might be an indicator of the TME of CRC.Furthermore,additional potential immunotherapeutic and chemotherapeutic drugs were explored.展开更多
Background:Various physiological mechanisms are linked to dilated cardiomyopathy(DCM)development,including oxidative stress,immune irregularities,inflammation,fibrosis,and genetic changes.However,precise molecular dri...Background:Various physiological mechanisms are linked to dilated cardiomyopathy(DCM)development,including oxidative stress,immune irregularities,inflammation,fibrosis,and genetic changes.However,precise molecular drivers of DCM,especially regarding abnormal immune responses,remain unclear.This study investigates immune-related long non-coding RNAs(lncRNAs)in DCM’s diagnostic and therapeutic potential.Methods:GSE141910,GSE135055,and GSE165303 datasets were acquired from the GEO database.LASSO,SVM-RFE,and random forest algorithms identified DCM-associated immune-related lncRNAs.Diagnostic capabilities were assessed by Nomogram and receiver operating characteristic(ROC)curves.Multivariate linear regression explored lncRNA correlations with ejection fraction.Single-sample gene set enrichment analysis(ssGSEA)gauged immune cell infiltration/functions.Functional enrichment analyses were performed using Gene set variation analysis(GSVA),gene ontology(GO),and the Kyoto Encyclopedia of Genes and Genomes(KEGG).Consensus clustering categorized DCM cases.Results:Ten immune-related lncRNAs emerged:C10orf71-AS1,FHAD1-AS1,SCIRT,FNDC1-AS1,MELTFAS1,LOC101928834,GDNF-AS1,DCXR-DT,C3orf36,and LOC107985323.These lncRNAs,tied to immunomodulation,showed promising DCM diagnostic accuracy.Adjusted for confounders,they independently correlated with ejection fraction.Using lncRNA expression,DCM patients were grouped into subtypes.Subtype C1 displayed a higher level of immune cell infiltration and immune checkpoint expression compared to subtype C2,emphasizing the variations in the immune microenvironment.Conclusion:This study identifies ten immune-related lncRNAs for further exploration in DCM diagnosis and subtyping.Based on expression patterns,we propose two potential DCM subtypes.Notably,findings are preliminary and hypothesis-generating,demanding validation and further investigation.This research provides insights into DCM diagnosis and classification.展开更多
文摘BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions.
基金Supported by National Natural Science Foundation of China,No.82170593,No.81700503the National Key Research and Development Program of China,No.2021YFC2700802.
文摘The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets.
文摘BACKGROUND Increasing data indicated that long noncoding RNAs(lncRNAs)were directly or indirectly involved in the occurrence and development of tumors,including hepatocellular carcinoma(HCC).Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues,but its role in HCC progression is unclear.Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes.AIM To study the role of ultrasound microbubbles(UTMBs)mediated HAND2-AS1 in the progression of HCC,in order to provide a new reference for the treatment of HCC.METHODS In vitro,we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs,and detected cell proliferation,apoptosis,invasion and epithelial-mesenchymal transition(EMT)by cell counting kit-8 assay,flow cytometry,Transwell invasion assay and Western blotting,respectively.In addition,we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior.Next,the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2(TIMP2)overexpression vector,and we detected cell proliferation,apoptosis,invasion and EMT.In vivo,we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability.RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation,invasion,and EMT,encouraged apoptosis,and HAND2-AS1 silencing eliminated the effect of UTMBs.Additionally,miR-873-5p targets the gene HAND2-AS1,which also targets the 3’UTR of TIMP2.And miR-873-5p mimic counteracted the impact of HAND2-AS1.Further,miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs.We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase(MMP)2/MMP9.In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice.CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.
文摘This commentary explores the burgeoning field of disulfidptosis-related long noncoding RNAs(lncRNAs)in the prognosis and therapeutic targeting of colorectal cancer(CRC).By evaluating recent research,including the pivotal study"Predicting colorectal cancer prognosis based on long noncoding RNAs of disulfidptosis genes"by Wang et al,this analysis underscores the critical role of lncRNAs in deciphering the molecular complexities of CRC.Highlighting the innovative methodologies and significant findings,I discuss the implications for patient survival,therapeutic response,and the potential of lncRNAs as biomarkers for precision medicine.The integration of bioinformatics,clinical databases,and molecular biology in these studies offers a promising avenue for advancing CRC treatment strategies and improving patient outcomes.
基金Supported by the Natural Science Funds for Young Scholar of Hebei,China,No.H2020206108the Subject of Health Commission of Hebei,China,No.20210151.
文摘BACKGROUND Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy(DN).The regulatory relationship between long noncoding RNAs(lncRNAs)and podocyte apoptosis has recently become another research hot spot in the DN field.AIM To investigate whether lncRNA protein-disulfide isomerase-associated 3(Pdia3)could regulate podocyte apoptosis through miR-139-3p and revealed the underlying mechanism.METHODS Using normal glucose or high glucose(HG)-cultured podocytes,the cellular functions and exact mechanisms underlying the regulatory effects of lncRNA Pdia3 on podocyte apoptosis and endoplasmic reticulum stress(ERS)were explored.LncRNA Pdia3 and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction.Relative cell viability was detected through the cell counting kit-8 colorimetric assay.The podocyte apoptosis rate in each group was measured through flow cytometry.The interaction between lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase reporter assay.Finally,western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p.RESULTS The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes.Next,lncRNA Pdia3 was involved in HG-induced podocyte apoptosis.Furthermore,the dual luciferase reporter assay confirmed the direct interaction between lncRNA Pdia3 and miR-139-3p.LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS through miR-139-3p in HG-cultured podocytes.CONCLUSION Taken together,this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p,which might provide a potential therapeutic target for DN.
基金the Ramalingaswami Re-Entry Fellowship,Department of Biotechnology,Govt.of India to S.Sur(BT/RLF/Re-Entry/47/2021).
文摘Oral squamous cell carcinoma(OSCC)is one of the most prevalent forms of head and neck squamous cell carcinomas(HNSCC)with a poor overall survival rate(about 50%),particularly in cases of metastasis.RNA-based cancer biomarkers are a relatively advanced concept,and non-coding RNAs currently have shown promising roles in the detection and treatment of various malignancies.This review underlines the function of long non-coding RNAs(lncRNAs)in the OSCC and its subsequent clinical implications.LncRNAs,a class of non-coding RNAs,are larger than 200 nucleotides and resemble mRNA in numerous ways.However,unlike mRNA,lncRNA regulates multiple druggable and non-druggable signaling molecules through simultaneous interaction with DNA,RNA,proteins,or microRNAs depending on concentration and localization in cells.Upregulation of oncogenic lncRNAs and downregulation of tumor suppressor lncRNAs are evident in OSCC tissues and body fluids such as blood and saliva indicating their potential as valuable biomarkers.Targeted inhibition of candidate oncogenic lncRNAs or overexpression of tumor suppressor lncRNAs showed potential therapeutic roles in in-vivo animal models.The types of lncRNAs that are expressed differentially in OSCC tissue and bodily fluids have been systematically documented with specificity and sensitivity.This review thoroughly discusses the biological functions of such lncRNAs in OSCC cell survival,proliferation,invasion,migration,metastasis,angiogenesis,metabolism,epigenetic modification,tumor immune microenvironment,and drug resistance.Subsequently,we addressed the diagnostic and therapeutic importance of lncRNAs in OSCC pre-clinical and clinical systems,providing details on ongoing research and outlining potential future directions for advancements in this field.In essence,this review could be a valuable resource by offering comprehensive and current insights into lncRNAs in OSCC for researchers in fundamental and clinical domains.
基金Supported by the Natural Science Foundation of Gansu Province,China,No.20JR5RA356 and No.22JR5RA511the Lanzhou City Chengguan District Science and Technology Planning Project,No.2016-7-17.
文摘BACKGROUND Gastric cancer,characterized by a multifactorial etiology and high heterogeneity,continues to confound researchers in terms of its pathogenesis.Curcumin,a natural anticancer agent,exhibits therapeutic promise in gastric cancer.Its effects include promoting cell apoptosis,curtailing tumor angiogenesis,and enhancing sensitivity to radiation and chemotherapy.Long noncoding RNAs(lncRNAs)have garnered significant attention as biomarkers for early screening,diagnosis,treatment,and drug response because of their remarkable specificity and sensitivity.Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis,clinical staging,metastasis,drug sensitivity,and prognosis in gastric cancer.A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer develop-ment can provide novel insights for precision treatment and tailored management of patients with gastric cancer.This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregu-lating specific lncRNAs and modulating gastric cancer onset and progression.AIM To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis,proliferation,and invasion.Furthermore,these findings were validated in clinical samples.METHODS The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation,flow cytometry to investigate its effects on apoptosis,and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells.Western blotting was used to gauge changes in the protein expression levels of CDK6,CDK4,Bax,Bcl-2,caspase-3,P65,and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment.Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction(qRT-PCR)in BGC-823 and MGC-803 cells.AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis,proliferation,migration,and invasion of gastric cancer cells.Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways.RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics.RESULTS Curcumin induced apoptosis and hindered proliferation,migration,and invasion of gastric cancer cells in a dose-and time-dependent manner.LncRNA AC022424.2 was upregulated after curcumin treatment,and its knockdown enhanced cancer cell aggressiveness.LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways.LncRNA AC022424.2 downregulation was correlated with lymph node metastasis,making it a potential diagnostic and prognostic marker.CONCLUSION Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2.This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation.The results of this study enhance our understanding of gastric cancer development and precision treatment.
文摘Non-alcoholic fatty liver disease(NAFLD)is emerging as a common cause of chronic liver disease in children and adults.NAFLD can progress to steatohepa-titis and potentially even hepatocellular carcinoma.Early identification of pati-ents at risk for progressive disease is crucial for managing NAFLD.Recent studies have identified long noncoding RNAs(lncRNAs),circular RNAs,and microRNAs as playing important roles in the pathogenesis of NAFLD.These noncoding RNAs are involved in modulating several metabolic pathways such as hepatic glucose and lipid metabolism,oxidative stress,and even carcinogenesis.Elevated levels of lncARSR and lncRNA nuclear-enriched abundant transcript 1 have been found in patients with NAFLD.In addition,lncRNAs such as PRYP4-3 and RP11-128N14.5 can distinguish patients with NAFLD from healthy indi-viduals.Increased MEG3 expression has been observed in both NAFLD and non-alcoholic steatohepatitis,suggesting that it may help predict patients at risk for disease progression.With advances in transcriptomics,we may discover additional targets to help in the identification and prognostication of NAFLD.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.KYYJ202116)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2020]the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Pear fruit senescence under high-and low-temperature conditions has been reported to be mediated by microRNAs.Long non-coding RNAs(lncRNAs),which can function as competing endogenous RNAs that interact with microRNAs,may also be involved in temperature-affected fruit senescence.Based on the transcriptome and microRNA sequencings,in this study,3330 lncRNAs were isolated from Pyrus pyrifolia fruit.Of these lncRNAs,2060 and 537 were responsive to high-and low-temperature conditions,respectively.Of these differentially expressed lncRNAs,82 and 24 correlated to the mRNAs involved in fruit senescence under high-and low-temperature conditions,respectively.Moreover,three lncRNAs were predicted to be competing endogenous RNAs(ceRNAs)that interact with the microRNAs involved in fruit senescence,while one and two ceRNAs were involved in fruit senescence under high-and low-temperature conditions,respectively.A dual-luciferase assay showed that the interaction of an lncRNA with a microRNA disrupts the action of the microRNA on the expression of its target mRNA(s).Furthermore,four alternative splicing-derived lncRNAs interacted with miR172i homologies(Novel_88 and Novel_69)to relieve the repressed expression of their target and produce an miR172i precursor.Correlation analysis of microRNA expression suggested that Novel_69 is likely involved in the cleavage of the pre-miR172i hairpin to generate mature miR172i.Taken together,lncRNAs are involved in pear fruit senescence under high-or low-temperature conditions through ceRNAs and the production of microRNA.
基金Supported by Science and Technology Innovation Talent Project of Sichuan Province,No.2022JDRC0047the Central Government-directed Special Funds for Local Science and Technology Development Project,No.2021ZYD0085+1 种基金Natural Science Foundation of China,No.82102383Qin Chuangyuan Recruited High-level Innovation and Entrepreneurship Talents Project of Science and Technology Department of Shaanxi Province,No.QCYRCXM-2022-56.
文摘Liver fibrosis is a wound-healing response following chronic liver injury caused by hepatitis virus infection,obesity,or excessive alcohol.It is a dynamic and reversible process characterized by the activation of hepatic stellate cells and excess accumulation of extracellular matrix.Advanced fibrosis could lead to cirrhosis and even liver cancer,which has become a significant health burden worldwide.Many studies have revealed that noncoding RNAs(ncRNAs),including microRNAs,long noncoding RNAs and circular RNAs,are involved in the pathogenesis and development of liver fibrosis by regulating signaling pathways including transforming growth factor-βpathway,phosphatidylinositol 3-kinase/protein kinase B pathway,and Wnt/β-catenin pathway.NcRNAs in serum or exosomes have been reported to tentatively applied in the diagnosis and staging of liver fibrosis and combined with elastography to improve the accuracy of diagnosis.NcRNAs mimics,ncRNAs in mesenchymal stem cell-derived exosomes,and lipid nanoparticles-encapsulated ncRNAs have become promising therapeutic approaches for the treatment of liver fibrosis.In this review,we update the latest knowledge on ncRNAs in the pathogenesis and progression of liver fibrosis,and discuss the potentials and challenges to use these ncRNAs for diagnosis,staging and treatment of liver fibrosis.All these will help us to develop a comprehensive understanding of the role of ncRNAs in liver fibrosis.
基金Supported by a grant from the“Ten Thousand Plan”Youth Talent Project in Yunnan Province(no grant number is applicable).
文摘Objective This meta-analysis explored whether the expression of actin filament-associated protein 1 antisense RNA 1(AFAP1-AS1)is related to the prognosis and clinicopathological features of patients with cancer.Methods PubMed,EMBASE,and Cochrane Library were systematically searched.Hazard ratios(HRs)with 95%confidence intervals(CIs)were used to assess the prognostic value based on overall survival(OS),disease-free survival(DFS),and progression-free survival(PFS).Odds ratios(ORs)with 95%CIs were used to determine the relationships between AFAP1-AS1 and clinicopathological features,such as large tumor size(LTS),high tumor stage(HTS),poor histological grade(PHG),lymph node metastasis(LNM),and distant metastasis(DM).Results Thirty-five eligible articles and 3433 cases were analyzed.High AFAP1-AS1 expression,compared to low AFAP1-AS1 expression,correlated with significantly shorter OS(HR=2.15,95%CI=1.97-2.34,P<0.001),DFS(HR=1.37,95%CI=1.19-1.57,P<0.001),and PFS(HR=1.97,95%CI=1.56-2.50,P<0.001)in patients with cancer.In various cancers,elevated AFAP1-AS1 expression was significantly associated with LTS(OR=2.76,95%CI=2.16-3.53,P<0.001),HTS(OR=2.23,95%CI=1.83-2.71,P<0.001),and PHG(OR=1.39,95%CI=1.08-1.79,P=0.01)but not LNM(OR=1.59,95%CI=0.88-2.85,P=0.12)or DM(OR=1.81,95%CI=0.90-3.66,P=0.10).Conclusion High AFAP1-AS1 expression was associated with prognostic and clinicopathological features,suggesting that AFAP1-AS1 is a prognostic biomarker for human cancers.
文摘AIM: To study the expression of long noncoding RNAs(lncRNAs) in hepatitis B virus(HBV)-related hepatocellular carcinoma(HCC).METHODS: The lncRNA profiles between HBV-related HCC tissues and corresponding normal liver tissues were generated using microarray analysis. Datasets were analyzed using multiple algorithms to depict alterations in gene expression on the basis of gene ontology(GO), pathway analysis, and lncRNA levels.RESULTS: The microarray revealed that 1772 lncRNAs and 2508 mRNAs were differently expressed. The pathway analysis demonstrated that the cell cycle, cytokinecytokine receptor interaction, chemokine signaling pathway, and phosphoinositide 3-kinase-protein kinase B signaling pathway may play important roles in HCC.Several GO terms, such as cell cycle, DNA replication,immune response, and signal transduction, were enriched in gene lists, suggesting a potential correlation with HBVrelated HCC. The upregulated large intergenic noncoding RNA ULK4P2 was physically combined with enhancer of zeste homolog 2. Therefore, the lncRNAs may participate in regulating HBV-related HCC.CONCLUSION: lncRNAs play important roles in HCC,future studies should verify whether large intergenic noncoding ULK4P2 functions by combining with enhancer of zeste homolog 2 in HCC.
文摘BACKGROUND Colorectal cancer(CRC)is one of the most prevalent tumors worldwide.Recently,long noncoding RNAs(lncRNAs)have been shown to influence tumorigenesis and tumor progression by acting as competing endogenous RNAs(ceRNAs).It is difficult to extract prognostic lncRNAs and useful bioinformation from most ceRNA networks constructed previously.AIM To construct a prognostic related ceRNA regulatory network and lncRNA related signature based on risk score in CRC.METHODS RNA transcriptome profile and clinical information of 506 CRC patients were downloaded from the Cancer Genome Atlas database.R packages and Perl program were used for data processing.Cox regression analysis was used for prognostic model construction.Quantitative real-time polymerase chain reaction was used to detect the expression of lncRNAs.RESULTS A prognostic-related ceRNA network was constructed,including 9 lncRNAs,44 mRNAs,and 30 miRNAs.In addition,a four-lncRNA model was constructed using multivariate Cox regression analysis,which could be an independent prognostic model in CRC.The risk score for each patient was calculated,and the 506 patients were divided into high and low-risk groups(253 for each group)based on the median risk score.The results of the survival analysis showed that patients with a high-risk score had a poor survival rate.Furthermore,the predictive value of the four-lncRNA model was evaluated in GSE38832.Patient survival probabilities could be better predicted when combing the risk score and clinical features.Gene Set Enrichment Analysis results verified that a number of cancer-related signaling pathways were enriched with a high-risk score in CRC.Finally,we validated a novel lncRNA(LINC00488)using quantitative real-time polymerase chain reaction in 22 paired CRC patient tumor tissues compared to adjacent non-tumor tissues.CONCLUSION The four-lncRNA model could give better predictive value for CRC patients.Our understanding of the lncRNA-related ceRNA regulatory mechanism could provide a potential diagnostic indicator for CRC patients.
基金CAMS Innovation Fund for Medical Sciences,Grant/Award Number:2017-I2M-2-005 and 2016-I2M-2-006Beijing Natural Science Foundation,Grant/Award Number:5171001
文摘Long noncoding RNAs(lnc RNAs) are RNA molecules comprising more than 200 nucleotides, which are not translated into proteins. Many studies have shown that lnc RNAs are involved in regulating a variety of biological processes, including immune, cancer, stress, development and differentiation at the transcriptional, epigenetic or post-transcriptional levels. Here, we review the role of lnc RNAs in the process of neurodevelopment, neural differentiation, synaptic function, and pathogenesis of Parkinson’s disease(PD). These pathomechanisms include protein misfolding and aggregation, disordered protein degradation, mitochondrial dysfunction, oxidative stress, autophagy, apoptosis, and neuroinflammation. This information will provide the basis of lnc RNA-based disease diagnosis and drug treatment for PD.
基金Supported by Partly Fund of Guangxi Provincial Health Bureau Scientific Research Project,No.Z2014054Youth Science Foun-dation of Guangxi Medical University,No.GXMUYSF201311+4 种基金Guangxi University Science and Technology Research Projects,No.LX2014075Natural Science Foundation of GuangxiNos.2015GXNSFBA139157,2015GXNSFCA139009National Natural Science Foundation of China,Nos.NSFC81360327,NSFC81560489NSFC81560469
文摘Hepatocellular carcinoma(HCC) is the predominant subject of liver malignancies which arouse global concern. Advanced studies have found that long noncoding RNAs(lnc RNAs) are differentially expressed in HCC and implicate they may play distinct roles in the pathogenesis and metastasis of HCC. However, the underlying mechanisms remain largely unclear. In this review, we summarized the functions and mechanisms of those known aberrantly expressed lncR NAs identified in human HCC tissues. We hope to enlighten more comprehensive researches on the detailed mechanisms of lncR NAs and their application in clinic, such as being used as diagnostic and prognostic biomarkers and the targets for potential therapy. Although studies on lncR NAs in HCC are still deficient, an improved understanding of the roles played by lncR NAs in HCC will lead to a much more effective utilization of those lnc RNAs as novel candidates in early detection, diagnosis, prevention and treatment of HCC.
基金supported by the National Natural Science Foundation of China,No.81600747(to YD)Startup Foundation for Doctors of Liaoning Province,China,No.201501020(to YD)
文摘Long noncoding RNA(lncRNA)regulates the proliferation and migration of human retinal endothelial cells,as well as retinal neovascularization in diabetic retinopathy.Based on similarities between the pathogenesis of retinopathy of prematurity(ROP)and diabetic retinopathy,lncRNA may also play a role in ROP.Seven-day-old mice were administered 75±2% oxygen for 5 days and normoxic air for another 5 days to establish a ROP model.Expression of lncRNA and mRNA in the retinal tissue of mice was detected by high-throughput sequencing technology,and biological functions of the resulted differentially expressed RNAs were evaluated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The results showed that compared with the control group,57 lncRNAs were differentially expressed,including 43 upregulated and 14 downregulated,in the retinal tissue of ROP mice.Compared with control mice,42 mRNAs were differentially expressed in the retinal tissue of ROP mice,including 24 upregulated and 18 downregulated mRNAs.Differentially expressed genes were involved in ocular development and related metabolic pathways.The differentially expressed lncRNAs may regulate ROP in mice via microRNAs and multiple signaling pathways.Our results revealed that these differentially expressed lncRNAs may be therapeutic targets for ROP treatment.This study was approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University on February 25,2016(approval No.2016PS074K).
基金the National Natural Science Foundation of China,No.81870743 and No.81771048.
文摘Bone is a complex tissue that undergoes constant remodeling to maintain homeostasis,which requires coordinated multilineage differentiation and proper proliferation of mesenchymal stromal cells(MSCs).Mounting evidence indicates that a disturbance of bone homeostasis can trigger degenerative bone diseases,including osteoporosis and osteoarthritis.In addition to conventional genetic modifications,epigenetic modifications(i.e.,DNA methylation,histone modifications,and the expression of noncoding RNAs)are considered to be contributing factors that affect bone homeostasis.Long noncoding RNAs(lncRNAs)were previously regarded as‘transcriptional noise’with no biological functions.However,substantial evidence suggests that lncRNAs have roles in the epigenetic regulation of biological processes in MSCs and related diseases.In this review,we summarized the interactions between lncRNAs and epigenetic modifiers associated with osteo-/adipogenic differentiation of MSCs and the pathogenesis of degenerative bone diseases and highlighted promising lncRNA-based diagnostic and therapeutic targets for bone diseases.
基金Supported by the Joint Funds for the Innovation of Science and Technology,Fujian Province,No.2019Y9133.
文摘BACKGROUND Tumor recurrence and metastasis lead to a poor prognosis in colorectal cancer(CRC).Necroptosis is closely related to the tumor microenvironment(TME)and affects tumor recurrence and metastasis.We aimed to stratify CRC patients according to necroptosis-related long noncoding RNAs(lncRNAs),which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs.AIM To stratify CRC patients according to necroptosis-related lncRNAs(NRLs),which can be used to not only evaluate prognosis and improve precision medicine in clinical practice but also screen potential immunotherapy drugs.METHODS LncRNA expression profiles were collected from The Cancer Genome Atlas.NRLs were identified by coexpression analysis.Cox regression analysis identified a NRL signature.Then,the value of this signature was comprehensively and multidimensionally evaluated,and its reliability for CRC prognosis prediction was assessed with clinical CRC data and compared with that of six other lncRNA were also performed according to the risk score(RS)of the signature.RESULTS An 8-lncRNA signature significantly associated with overall survival(OS)was constructed,and its reliability was validated with clinical CRC data.Most of the areas under the receiver operating characteristic curves(AUCs)values for 1-,3-and 5-year OS for this signature were higher than those for the other six lncRNA signatures.OS,disease-specific survival and the progression-free interval were all significantly poorer in the high-risk group.The RS of the signature showed good concordance with the predicted prognosis,with AUCs for 1-,3-and 5-year OS of 0.79,0.81 and 0.77,respectively.Additionally,the calibration plots for this signature combined with clinical factors showed that this combination could effectively improve the ability to predict OS.The RS was correlated with tumor stage,lymph node metastasis and distant metastasis.Most of the enriched Kyoto Encyclopedia of Genes and Genomes and Gene Ontology terms were tumor metastasis-related pathways in the high-risk group;these patients showed greater infiltration of immunosuppressive cells,such as cancer-associated fibroblasts,hematopoietic stem cells and M2 macrophages,but less infiltration of infiltrating antitumor effector immune cells,such as cluster of differentiation 8+T cells and regulatory T cells(Tregs).We explored additional potential immune checkpoint genes and potential immunotherapeutic and chemotherapeutic drugs with relatively low IC_(50) values.CONCLUSION We identified an NRL signature with strong fidelity that could stably predict prognosis and might be an indicator of the TME of CRC.Furthermore,additional potential immunotherapeutic and chemotherapeutic drugs were explored.
基金funded by the Chinese National Natural Science Foundation(No.12072215)Science and Technology Department of Sichuan Province(2021YFS0120 and 2023NSFSC1640)+1 种基金Chinese Postdoctoral Science Foundation(2022M722278)Chunhui Program of Ministry of Education of China(No.HZKY20220573).
文摘Background:Various physiological mechanisms are linked to dilated cardiomyopathy(DCM)development,including oxidative stress,immune irregularities,inflammation,fibrosis,and genetic changes.However,precise molecular drivers of DCM,especially regarding abnormal immune responses,remain unclear.This study investigates immune-related long non-coding RNAs(lncRNAs)in DCM’s diagnostic and therapeutic potential.Methods:GSE141910,GSE135055,and GSE165303 datasets were acquired from the GEO database.LASSO,SVM-RFE,and random forest algorithms identified DCM-associated immune-related lncRNAs.Diagnostic capabilities were assessed by Nomogram and receiver operating characteristic(ROC)curves.Multivariate linear regression explored lncRNA correlations with ejection fraction.Single-sample gene set enrichment analysis(ssGSEA)gauged immune cell infiltration/functions.Functional enrichment analyses were performed using Gene set variation analysis(GSVA),gene ontology(GO),and the Kyoto Encyclopedia of Genes and Genomes(KEGG).Consensus clustering categorized DCM cases.Results:Ten immune-related lncRNAs emerged:C10orf71-AS1,FHAD1-AS1,SCIRT,FNDC1-AS1,MELTFAS1,LOC101928834,GDNF-AS1,DCXR-DT,C3orf36,and LOC107985323.These lncRNAs,tied to immunomodulation,showed promising DCM diagnostic accuracy.Adjusted for confounders,they independently correlated with ejection fraction.Using lncRNA expression,DCM patients were grouped into subtypes.Subtype C1 displayed a higher level of immune cell infiltration and immune checkpoint expression compared to subtype C2,emphasizing the variations in the immune microenvironment.Conclusion:This study identifies ten immune-related lncRNAs for further exploration in DCM diagnosis and subtyping.Based on expression patterns,we propose two potential DCM subtypes.Notably,findings are preliminary and hypothesis-generating,demanding validation and further investigation.This research provides insights into DCM diagnosis and classification.