To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic prior...To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.展开更多
Dear Sir,Iam Dr.Ye Zhang,from Beijing Tongren Eye Center,Beijing Tongren Hospital,Beijing,China.I write to present a case report of bilateral retinoblastoma(Rb)with10-year-interval of onsets.Rb is the most common mali...Dear Sir,Iam Dr.Ye Zhang,from Beijing Tongren Eye Center,Beijing Tongren Hospital,Beijing,China.I write to present a case report of bilateral retinoblastoma(Rb)with10-year-interval of onsets.Rb is the most common malignant intraocular tumor of infancy and childhood,with the majority of cases being diagnosed before 5 years of age.It may involve in unilateral or bilateral eye.Studies showed that the interval of the onsets of bilateral Rb is always within three years.So it is very rare展开更多
This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this p...This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.展开更多
Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurati...Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.展开更多
针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与St...针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与Stacking集成模型相结合的源荷区间预测方法。首先,光伏出力存在时序性特征,采用局部线性嵌入改进k-means算法聚类提取特征日,在实现数据降维同时,减少了网络训练难度;其次,在Stacking集成模型的框架下,将SWLSTM作为元学习器,并通过Q统计量筛选合适的基学习器模型,从而实现多模型融合的多异学习器Stacking集成学习的源荷预测;紧接着,为了得到预测的不确定信息,引入置信度区间预测;最后,采用实测数据对本文所提方法进行验证。结果表明改进k-means算法能够降低其求解难度,加快求解速度,可以快速获取聚类特征;所引入集成学习模型和置信度区间,有效表征源荷预测的不确定性,提升区间预测模型的泛化能力。展开更多
Objective:Accurate measurement of QT interval,the ventricular action potential from depolarization to repolarization,is important for the early detection of Long QT syndrome.The most effective QT correction(QTc)formul...Objective:Accurate measurement of QT interval,the ventricular action potential from depolarization to repolarization,is important for the early detection of Long QT syndrome.The most effective QT correction(QTc)formula has yet to be determined in the pediatric population,although it has intrinsically greater extremes in heart rate(HR)and is more susceptible to errors in measurement.The authors of this study compare six dif-ferent QTc methods(Bazett,Fridericia,Framingham,Hodges,Rautaharju,and a computer algorithm utilizing the Bazett formula)for consistency against variations in HR and RR interval.Methods:Descriptive Retrospective Study.We included participants from a pediatric cardiology practice of a community hospital who had an ECG performed in 2017.All participants were healthy patients with no past medical history and no regular med-ications.Results:ECGs from 95 participants from one month to 21 years of age(mean 9.7 years)were included with a mean HR of 91 beats per minute(bpm).The two-sample paired t-test or Wilcoxon signed-rank test assessed for any difference between QTc methods.A statistically significant difference was observed between every combination of two QTc formulae.The Spearman’s rank correlation analysis explored the QTc/HR and QTc/RR relationships for each formula.Fridericia method was most independent of HR and RR with the lowest absolute value of correlation coefficients.Bazett and Computer had moderate correlations,while Framingham and Rautaharju exhibited strong correlations.Correlations were positive for Bazett and Computer,reflecting results from prior studies demonstrating an over-correction of Bazett at higher HRs.In the linear QTc/HR regression analysis,Bazett had the slope closest to zero,although Computer,Hodges,and Fridericia had comparable values.Alternatively,Fridericia had the linear QTc/RR regression coefficient closest to zero.The Bland-Altman method assessed for bias and the limits of agreement between correction formulae.Bazett and Computer exhibited good agreement with minimal bias along with Framingham and Rautaharju.To account for a possible skewed distri-bution of QT,all the above analyses were also performed excluding the top and bottom 2%of data as sorted by heart rate ranges(N=90).Results from this data set were consistent with those derived from all participants(N=95).Conclusions:Overall,the Fridericia correction method provided the best rate correction in our pedia-tric study cohort.展开更多
基金The Natural Science Foundation of Jiangsu Province(NoBK2005408)
文摘To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.
文摘Dear Sir,Iam Dr.Ye Zhang,from Beijing Tongren Eye Center,Beijing Tongren Hospital,Beijing,China.I write to present a case report of bilateral retinoblastoma(Rb)with10-year-interval of onsets.Rb is the most common malignant intraocular tumor of infancy and childhood,with the majority of cases being diagnosed before 5 years of age.It may involve in unilateral or bilateral eye.Studies showed that the interval of the onsets of bilateral Rb is always within three years.So it is very rare
基金supported by the National Key Research and Development Program of China(2018YFB1201500)
文摘This paper uses Gaussian interval type-2 fuzzy se theory on historical traffic volume data processing to obtain a 24-hour prediction of traffic volume with high precision. A K-means clustering method is used in this paper to get 5 minutes traffic volume variation as input data for the Gaussian interval type-2 fuzzy sets which can reflect the distribution of historical traffic volume in one statistical period. Moreover, the cluster with the largest collection of data obtained by K-means clustering method is calculated to get the key parameters of type-2 fuzzy sets, mean and standard deviation of the Gaussian membership function.Using the range of data as the input of Gaussian interval type-2 fuzzy sets leads to the range of traffic volume forecasting output with the ability of describing the possible range of the traffic volume as well as the traffic volume prediction data with high accuracy. The simulation results show that the average relative error is reduced to 8% based on the combined K-means Gaussian interval type-2 fuzzy sets forecasting method. The fluctuation range in terms of an upper and a lower forecasting traffic volume completely envelopes the actual traffic volume and reproduces the fluctuation range of traffic flow.
文摘Asymptotic eigenvalues and eigenfunctions for the Orr-Sommerfeld equation in two-dimensional and three-dimensional incompressible flows on an infinite domain and on a semi-infinite domain are obtained. Two configurations are considered, one in which a short-wave limit approximation is used, and another in which a long-wave limit approximation is used. In the short-wave limit, Wentzel-Kramers-Brillouin (WKB) methods are utilized to estimate the eigenvalues, and the eigenfunctions are approximated in terms of Green’s functions. The procedure consists of transforming the Orr-Sommerfeld equation into a system of two second order ordinary differential equations for which the eigenvalues and the eigenfunctions can be approximated. In the long-wave limit approximation, solutions are expressed in terms of generalized hypergeometric functions. Our procedure works regardless of the values of the Reynolds number.
文摘针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与Stacking集成模型相结合的源荷区间预测方法。首先,光伏出力存在时序性特征,采用局部线性嵌入改进k-means算法聚类提取特征日,在实现数据降维同时,减少了网络训练难度;其次,在Stacking集成模型的框架下,将SWLSTM作为元学习器,并通过Q统计量筛选合适的基学习器模型,从而实现多模型融合的多异学习器Stacking集成学习的源荷预测;紧接着,为了得到预测的不确定信息,引入置信度区间预测;最后,采用实测数据对本文所提方法进行验证。结果表明改进k-means算法能够降低其求解难度,加快求解速度,可以快速获取聚类特征;所引入集成学习模型和置信度区间,有效表征源荷预测的不确定性,提升区间预测模型的泛化能力。
基金This study was reviewed and approved by the New York-Presbyterian Brooklyn Methodist Hospital Institutional Review Committee.The study follows the guidelines outlined in the Declaration of Helsinki.
文摘Objective:Accurate measurement of QT interval,the ventricular action potential from depolarization to repolarization,is important for the early detection of Long QT syndrome.The most effective QT correction(QTc)formula has yet to be determined in the pediatric population,although it has intrinsically greater extremes in heart rate(HR)and is more susceptible to errors in measurement.The authors of this study compare six dif-ferent QTc methods(Bazett,Fridericia,Framingham,Hodges,Rautaharju,and a computer algorithm utilizing the Bazett formula)for consistency against variations in HR and RR interval.Methods:Descriptive Retrospective Study.We included participants from a pediatric cardiology practice of a community hospital who had an ECG performed in 2017.All participants were healthy patients with no past medical history and no regular med-ications.Results:ECGs from 95 participants from one month to 21 years of age(mean 9.7 years)were included with a mean HR of 91 beats per minute(bpm).The two-sample paired t-test or Wilcoxon signed-rank test assessed for any difference between QTc methods.A statistically significant difference was observed between every combination of two QTc formulae.The Spearman’s rank correlation analysis explored the QTc/HR and QTc/RR relationships for each formula.Fridericia method was most independent of HR and RR with the lowest absolute value of correlation coefficients.Bazett and Computer had moderate correlations,while Framingham and Rautaharju exhibited strong correlations.Correlations were positive for Bazett and Computer,reflecting results from prior studies demonstrating an over-correction of Bazett at higher HRs.In the linear QTc/HR regression analysis,Bazett had the slope closest to zero,although Computer,Hodges,and Fridericia had comparable values.Alternatively,Fridericia had the linear QTc/RR regression coefficient closest to zero.The Bland-Altman method assessed for bias and the limits of agreement between correction formulae.Bazett and Computer exhibited good agreement with minimal bias along with Framingham and Rautaharju.To account for a possible skewed distri-bution of QT,all the above analyses were also performed excluding the top and bottom 2%of data as sorted by heart rate ranges(N=90).Results from this data set were consistent with those derived from all participants(N=95).Conclusions:Overall,the Fridericia correction method provided the best rate correction in our pedia-tric study cohort.