Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in nume...Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in numerical models. Such inaccuracies combined with a paucity of validation data create a difficulty for coastal planners/engineers who are required to interpret such morphological models to develop coastal management strategies. This study develops an approach to long term morphological modelling of a barrier beach system that includes the findings of over 10 years of coastal monitoring on a dynamic coastal system. The novel approach to predicting the long term evolution of the area combines a mix of short term hydrodynamic monitoring and long term morphological modelling to predict future changes in a breached barrier system. A coupled wave, wind, hydrodynamic and sediment transport numerical model was used to predict the coastal evolution in the dynamic barrier beach system of Inner Dingle Bay, Co. Kerry, Ireland. The modelling approach utilizes the schematisation of inputs to reflect observed trends. The approach is subject to two stages of validation both quantitative and qualitative. The study highlights the importance of considering all the parameters responsible for driving coastal evolution and the necessity to have long term monitoring results for trend based validation.展开更多
In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α...In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.展开更多
In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long- range hopping and random update via Monte Carlo simulations theoretically. Particles in the model wi...In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long- range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α,β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems.展开更多
针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(sin...针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。展开更多
Road transport safety has always been paid attention to by the safety production managers of enterprises. In this study, cloud model and analytic hierarchy process were applied to the safety of long-tube trailer trans...Road transport safety has always been paid attention to by the safety production managers of enterprises. In this study, cloud model and analytic hierarchy process were applied to the safety of long-tube trailer transport. The opinions of 30 experts were analyzed, from which 29 key parameters were selected. The study addressed the relevance of the parameters and the possibility of automatic collection and transmission to obtain 12 core risk factors. The macro-safety risk indicator system for long-tube trailers was established based on the identified risk indicators. Finally, a risk assessment model for road transport of long tube trailers consisting of 3 dimensions of likelihood, severity and sensitivity was constructed. This model provides a technical method for strengthening the risk control of road transport of long-tube trailers.展开更多
文摘Numerical modelling of coastal morphology is a complex and sometimes unrewarding exercise and often not yielding tangible results. Typically, the underlying drivers of morphology are not properly accounted for in numerical models. Such inaccuracies combined with a paucity of validation data create a difficulty for coastal planners/engineers who are required to interpret such morphological models to develop coastal management strategies. This study develops an approach to long term morphological modelling of a barrier beach system that includes the findings of over 10 years of coastal monitoring on a dynamic coastal system. The novel approach to predicting the long term evolution of the area combines a mix of short term hydrodynamic monitoring and long term morphological modelling to predict future changes in a breached barrier system. A coupled wave, wind, hydrodynamic and sediment transport numerical model was used to predict the coastal evolution in the dynamic barrier beach system of Inner Dingle Bay, Co. Kerry, Ireland. The modelling approach utilizes the schematisation of inputs to reflect observed trends. The approach is subject to two stages of validation both quantitative and qualitative. The study highlights the importance of considering all the parameters responsible for driving coastal evolution and the necessity to have long term monitoring results for trend based validation.
基金Project supported in part by National Basic Research Program of China (973 Project) (Grant No 2006CB705506)Hi-Tech Research and Development Program of China (863 Project) (Grant No 2007AA11Z222)National Natural Science Foundation of China (Grant Nos 60721003 and 60774034)
文摘In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41274109 and 11104022)the Fund for Sichuan Youth Science and Technology Innovation Research Team(Grant No.2011JTD0013)the Creative Team Program of Chengdu University of Technology
文摘In this paper we investigate the dynamics of an asymmetric exclusion process on a one-dimensional lattice with long- range hopping and random update via Monte Carlo simulations theoretically. Particles in the model will firstly try to hop over successive unoccupied sites with a probability q, which is different from previous exclusion process models. The probability q may represent the random access of particles. Numerical simulations for stationary particle currents, density profiles, and phase diagrams are obtained. There are three possible stationary phases: the low density (LD) phase, high density (HD) phase, and maximal current (MC) in the system, respectively. Interestingly, bulk density in the LD phase tends to zero, while the MC phase is governed by α,β, and q. The HD phase is nearly the same as the normal TASEP, determined by exit rate β. Theoretical analysis is in good agreement with simulation results. The proposed model may provide a better understanding of random interaction dynamics in complex systems.
文摘针对中长期电力负荷序列噪声含量高、难以直接提取序列周期规律从而影响预测精度的问题,提出了一种基于完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和奇异谱分析(singular spectrum analysis,SSA)双重分解的双向长短时记忆网络(bidirectional long and short time memory,BiLSTM)预测模型。首先,采用CEEMDAN对历史负荷进行分解,以得到若干个周期规律更为清晰的子序列;再利用多尺度熵(multiscale entropy,MSE)计算所有子序列的复杂程度,根据不同时间尺度上的样本熵值将相似的子序列重构聚合;然后,利用SSA去噪的功能,对高度复杂的新序列进行二次分解,去除序列中的噪声并提取更为主要的规律,从而进一步提高中长序列预测精度;再将得到的最终一组子序列输入BiLSTM进行预测;最后,考虑到天气、节假日等外部因素对电力负荷的影响,提出了一种误差修正技术。选取了巴拿马某地区的用电负荷进行实验,实验结果表明,经过双重分解可以将均方根误差降低87.4%;预测未来一年的负荷序列时,采用的BiLSTM模型将拟合系数最高提高2.5%;所提出的误差修正技术可将均方根误差降低9.7%。
文摘Road transport safety has always been paid attention to by the safety production managers of enterprises. In this study, cloud model and analytic hierarchy process were applied to the safety of long-tube trailer transport. The opinions of 30 experts were analyzed, from which 29 key parameters were selected. The study addressed the relevance of the parameters and the possibility of automatic collection and transmission to obtain 12 core risk factors. The macro-safety risk indicator system for long-tube trailers was established based on the identified risk indicators. Finally, a risk assessment model for road transport of long tube trailers consisting of 3 dimensions of likelihood, severity and sensitivity was constructed. This model provides a technical method for strengthening the risk control of road transport of long-tube trailers.