In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripp...Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the origina...Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.展开更多
Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model wa...Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features.The network connects GCN and LSTMnetwork in series,and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction,which fully excavates the temporal and spatial features of the skeleton sequence.Finally,an attention layer is designed to enhance the features of key bone points,and Softmax is used to classify and identify dangerous behaviors.The dangerous behavior datasets are derived from NTU-RGB+D and Kinetics data sets.Experimental results show that the proposed method can effectively identify some dangerous behaviors in the building,and its accuracy is higher than those of other similar methods.展开更多
Mobile malware occupies a considerable proportion of cyberattacks.With the update of mobile device operating systems and the development of software technology,more and more new malware keep appearing.The emergence of...Mobile malware occupies a considerable proportion of cyberattacks.With the update of mobile device operating systems and the development of software technology,more and more new malware keep appearing.The emergence of new malware makes the identification accuracy of existing methods lower and lower.There is an urgent need for more effective malware detection models.In this paper,we propose a new approach to mobile malware detection that is able to detect newly-emerged malware instances.Firstly,we build and train the LSTM-based model on original benign and malware samples investigated by both static and dynamic analysis techniques.Then,we build a generative adversarial network to generate augmented examples,which can emulate the characteristics of newly-emerged malware.At last,we use the augmented examples to retrain the 4th and 5th layers of the LSTM network and the last fully connected layer so that it can discriminate against newly-emerged malware.Actual experiments show that our malware detection achieved a classification accuracy of 99.94%when tested on augmented samples and 86.5%with the samples of newly-emerged malware on real data.展开更多
Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematicall...Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system.展开更多
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2019-2016-0-00313)supervised by the IITP(Institute for Information&communication Technology Promotion)+1 种基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning(2017R1E1A1A01074345).
文摘Predominantly the localization accuracy of the magnetic field-based localization approaches is severed by two limiting factors:Smartphone heterogeneity and smaller data lengths.The use of multifarioussmartphones cripples the performance of such approaches owing to the variability of the magnetic field data.In the same vein,smaller lengths of magnetic field data decrease the localization accuracy substantially.The current study proposes the use of multiple neural networks like deep neural network(DNN),long short term memory network(LSTM),and gated recurrent unit network(GRN)to perform indoor localization based on the embedded magnetic sensor of the smartphone.A voting scheme is introduced that takes predictions from neural networks into consideration to estimate the current location of the user.Contrary to conventional magnetic field-based localization approaches that rely on the magnetic field data intensity,this study utilizes the normalized magnetic field data for this purpose.Training of neural networks is carried out using Galaxy S8 data while the testing is performed with three devices,i.e.,LG G7,Galaxy S8,and LG Q6.Experiments are performed during different times of the day to analyze the impact of time variability.Results indicate that the proposed approach minimizes the impact of smartphone variability and elevates the localization accuracy.Performance comparison with three approaches reveals that the proposed approach outperforms them in mean,50%,and 75%error even using a lesser amount of magnetic field data than those of other approaches.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
基金National Natural Science Foundation of China(No.71961016)Planning Fund for the Humanities and Social Sciences of the Ministry of Education(Nos.15XJAZH002,18YJAZH148)Natural Science Foundation of Gansu Province(No.18JR3RA125)。
文摘Aiming at the problem that some existing traffic flow prediction models are only for a single road segment and the model input data are not pre-processed,a heuristic threshold algorithm is used to de-noise the original traffic flow data after wavelet decomposition.The correlation coefficients of road traffic flow data are calculated and the data compression matrix of road traffic flow is constructed.Data de-noising minimizes the interference of data to the model,while the correlation analysis of road network data realizes the prediction at the road network level.Utilizing the advantages of long short term memory(LSTM)network in time series data processing,the compression matrix is input into the constructed LSTM model for short-term traffic flow prediction.The LSTM-1 and LSTM-2 models were respectively trained by de-noising processed data and original data.Through simulation experiments,different prediction times were set,and the prediction results of the prediction model proposed in this paper were compared with those of other methods.It is found that the accuracy of the LSTM-2 model proposed in this paper increases by 10.278%on average compared with other prediction methods,and the prediction accuracy reaches 95.58%,which proves that the short-term traffic flow prediction method proposed in this paper is efficient.
文摘Building indoor dangerous behavior recognition is a specific application in the field of abnormal human recognition.A human dangerous behavior recognition method based on LSTM-GCN with attention mechanism(GLA)model was proposed aiming at the problem that the existing human skeleton-based action recognition methods cannot fully extract the temporal and spatial features.The network connects GCN and LSTMnetwork in series,and inputs the skeleton sequence extracted by GCN that contains spatial information into the LSTM layer for time sequence feature extraction,which fully excavates the temporal and spatial features of the skeleton sequence.Finally,an attention layer is designed to enhance the features of key bone points,and Softmax is used to classify and identify dangerous behaviors.The dangerous behavior datasets are derived from NTU-RGB+D and Kinetics data sets.Experimental results show that the proposed method can effectively identify some dangerous behaviors in the building,and its accuracy is higher than those of other similar methods.
基金Funding Statement:This work was supported by the National Nature Science Foundation of China(Nos.U1836110,1836208).
文摘Mobile malware occupies a considerable proportion of cyberattacks.With the update of mobile device operating systems and the development of software technology,more and more new malware keep appearing.The emergence of new malware makes the identification accuracy of existing methods lower and lower.There is an urgent need for more effective malware detection models.In this paper,we propose a new approach to mobile malware detection that is able to detect newly-emerged malware instances.Firstly,we build and train the LSTM-based model on original benign and malware samples investigated by both static and dynamic analysis techniques.Then,we build a generative adversarial network to generate augmented examples,which can emulate the characteristics of newly-emerged malware.At last,we use the augmented examples to retrain the 4th and 5th layers of the LSTM network and the last fully connected layer so that it can discriminate against newly-emerged malware.Actual experiments show that our malware detection achieved a classification accuracy of 99.94%when tested on augmented samples and 86.5%with the samples of newly-emerged malware on real data.
文摘Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system.