A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force...A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.展开更多
Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on w...Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.展开更多
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits...In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app...To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.展开更多
Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately pr...Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.展开更多
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输...针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。展开更多
基金supported by the Ministry of Trade,Industry & Energy(MOTIE,Korea) under Industrial Technology Innovation Program (No.10063424,'development of distant speech recognition and multi-task dialog processing technologies for in-door conversational robots')
文摘A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method.
基金support of national natural science foundation of China(No.52067021)natural science foundation of Xinjiang(2022D01C35)+1 种基金excellent youth scientific and technological talents plan of Xinjiang(No.2019Q012)major science&technology special project of Xinjiang Uygur Autonomous Region(2022A01002-2)。
文摘Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation.Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections.For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model,the short-term prediction of wind power based on a combined neural network is proposed.First,the Bi-directional Long Short Term Memory(BiLSTM)network prediction model is constructed,and the bi-directional nature of the BiLSTM network is used to deeply mine the wind power data information and find the correlation information within the data.Secondly,to avoid the limitation of a single prediction model when the wind power changes abruptly,the Wavelet Transform-Improved Adaptive Genetic Algorithm-Back Propagation(WT-IAGA-BP)neural network based on the combination of the WT-IAGA-BP neural network and BiLSTM network is constructed for the short-term prediction of wind power.Finally,comparing with LSTM,BiLSTM,WT-LSTM,WT-BiLSTM,WT-IAGA-BP,and WT-IAGA-BP&LSTM prediction models,it is verified that the wind power short-term prediction model based on the combination of WT-IAGA-BP neural network and BiLSTM network has higher prediction accuracy.
基金supported by a State Grid Zhejiang Electric Power Co.,Ltd.Economic and Technical Research Institute Project(Key Technologies and Empirical Research of Diversified Integrated Operation of User-Side Energy Storage in Power Market Environment,No.5211JY19000W)supported by the National Natural Science Foundation of China(Research on Power Market Management to Promote Large-Scale New Energy Consumption,No.71804045).
文摘In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
基金Supported by the National Natural Science Foundation of China(U1663208,51520105005)the National Science and Technology Major Project of China(2017ZX05009-005,2016ZX05037-003)
文摘To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation.
文摘Currently,Bitcoin is the world’s most popular cryptocurrency.The price of Bitcoin is extremely volatile,which can be described as high-benefit and high-risk.To minimize the risk involved,a means of more accurately predicting the Bitcoin price is required.Most of the existing studies of Bitcoin prediction are based on historical(i.e.,benchmark)data,without considering the real-time(i.e.,live)data.To mitigate the issue of price volatility and achieve more precise outcomes,this study suggests using historical and real-time data to predict the Bitcoin candlestick—or open,high,low,and close(OHLC)—prices.Seeking a better prediction model,the present study proposes time series-based deep learning models.In particular,two deep learning algorithms were applied,namely,long short-term memory(LSTM)and gated recurrent unit(GRU).Using real-time data,the Bitcoin candlesticks were predicted for three intervals:the next 4 h,the next 12 h,and the next 24 h.The results showed that the best-performing model was the LSTM-based model with the 4-h interval.In particular,this model achieved a stellar performance with a mean absolute percentage error(MAPE)of 0.63,a root mean square error(RMSE)of 0.0009,a mean square error(MSE)of 9e-07,a mean absolute error(MAE)of 0.0005,and an R-squared coefficient(R2)of 0.994.With these results,the proposed prediction model has demonstrated its efficiency over the models proposed in previous studies.The findings of this study have considerable implications in the business field,as the proposed model can assist investors and traders in precisely identifying Bitcoin sales and buying opportunities.
文摘针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。