期刊文献+
共找到456篇文章
< 1 2 23 >
每页显示 20 50 100
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
1
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
下载PDF
用于倾角监测中的MEMS加速度计补偿方法 被引量:1
2
作者 杨小平 谭凯 +2 位作者 蒋力 刘光辉 李哲宏 《微纳电子技术》 CAS 北大核心 2022年第9期911-919,965,共10页
针对在山体滑坡倾角监测中微电子机械系统(MEMS)加速度计存在误差的问题,传统方法的补偿效果欠佳,且无法很好地对时间序列数据进行分析。为了提高山体姿态监测的精度,采用了一种基于一维卷积神经网络(1D-CNN)与长短期记忆(LSTM)网络相... 针对在山体滑坡倾角监测中微电子机械系统(MEMS)加速度计存在误差的问题,传统方法的补偿效果欠佳,且无法很好地对时间序列数据进行分析。为了提高山体姿态监测的精度,采用了一种基于一维卷积神经网络(1D-CNN)与长短期记忆(LSTM)网络相结合的MEMS加速度计误差补偿方法。将采集到的加速度数据转换成角度数据,然后通过1D-CNN与LSTM网络模型进行训练,设计了误差补偿的硬件系统,从而实现实时误差补偿。实验结果表明,与卡尔曼滤波和反向传播(BP)神经网络相比,X轴的均值和标准差分别为0.000 057°和0.000 033°,误差下降了一个数量级,说明1D-CNN与LSTM相结合的网络对MEMS加速度计具有更好的补偿效果,为将来应用在山体滑坡倾角监测中奠定了基础。 展开更多
关键词 微电子机械系统(memS) 加速度计 误差补偿 一维卷积神经网络(1D-CNN) 长短期记忆(LSTM)网络 倾角监测
下载PDF
LSTM网络提高MEMS惯导定位精度的分析及验证 被引量:11
3
作者 陈怀宇 尹达一 张泉 《中国惯性技术学报》 EI CSCD 北大核心 2018年第5期610-615,共6页
为了提高GPS信号短期丢失状态下微机电(MEMS)惯导的导航定位精度,提出一种基于长短期记忆网络(LSTM)预测和传统GPS/MEMS组合导航系统相结合的高精度定位方法,对存在GPS信号状态下的LSTM模型进行训练来预测输出GPS信号丢失时的定位信息... 为了提高GPS信号短期丢失状态下微机电(MEMS)惯导的导航定位精度,提出一种基于长短期记忆网络(LSTM)预测和传统GPS/MEMS组合导航系统相结合的高精度定位方法,对存在GPS信号状态下的LSTM模型进行训练来预测输出GPS信号丢失时的定位信息。针对单纯MEMS惯导推算误差发散快和反向传播神经网络(BPNN)无法处理时间序列数据的问题,采用LSTM来进一步抑制惯导累积误差,并使用自适应时刻估计方法来优化训练过程以提高模型性能。60 min时长的行驶测试数据集的验证结果表明:基于LSTM的MEMS惯导定位方法能够有效提高无GPS信号状态下的定位精度,相比于单纯MEMS惯导推算和BPNN的定位精度分别提高了94.62%和73.03%。 展开更多
关键词 导航定位 微机电惯导 反向传播神经网络 长短期记忆网络
下载PDF
Deep Learning Based Model Predictive Control for a Reverse Osmosis Desalination Plant 被引量:1
4
作者 Divas Karimanzira Thomas Rauschenbach 《Journal of Applied Mathematics and Physics》 2020年第12期2713-2731,共19页
Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematicall... Reverse Osmosis (RO) desalination plants are highly nonlinear multi-input-multioutput systems that are affected by uncertainties, constraints and some physical phenomena such as membrane fouling that are mathematically difficult to describe. Such systems require effective control strategies that take these effects into account. Such a control strategy is the nonlinear model predictive (NMPC) controller. However, an NMPC depends very much on the accuracy of the internal model used for prediction in order to maintain feasible operating conditions of the RO desalination plant. Recurrent Neural Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can capture complex nonlinear dynamic behavior and provide long-range predictions even in the presence of disturbances. Therefore, in this paper an NMPC for a RO desalination plant that utilizes an LSTM as the predictive model will be presented. It will be tested to maintain a given permeate flow rate and keep the permeate concentration under a certain limit by manipulating the feed pressure. Results show a good performance of the system. 展开更多
关键词 DESALINATION model Predictive Control Artificial Intelligence long short term memory Neural network Reverse Osmosis
下载PDF
Recent Progresses in Deep Learning Based Acoustic Models 被引量:9
5
作者 Dong Yu Jinyu Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期396-409,共14页
In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) a... In this paper,we summarize recent progresses made in deep learning based acoustic models and the motivation and insights behind the surveyed techniques.We first discuss models such as recurrent neural networks(RNNs) and convolutional neural networks(CNNs) that can effectively exploit variablelength contextual information,and their various combination with other models.We then describe models that are optimized end-to-end and emphasize on feature representations learned jointly with the rest of the system,the connectionist temporal classification(CTC) criterion,and the attention-based sequenceto-sequence translation model.We further illustrate robustness issues in speech recognition systems,and discuss acoustic model adaptation,speech enhancement and separation,and robust training strategies.We also cover modeling techniques that lead to more efficient decoding and discuss possible future directions in acoustic model research. 展开更多
关键词 Attention model convolutional neural network(CNN) connectionist temporal classification(CTC) deep learning(DL) long short-term memory(LSTM) permutation invariant training speech adaptation speech processing speech recognition speech separation
下载PDF
基于BERT-BiLSTM-CRF模型的畜禽疫病文本分词研究 被引量:2
6
作者 余礼根 郭晓利 +3 位作者 赵红涛 杨淦 张俊 李奇峰 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期287-294,共8页
针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectiona... 针对畜禽疫病文本语料匮乏、文本内包含大量疫病名称及短语等未登录词问题,提出了一种结合词典匹配的BERT-BiLSTM-CRF畜禽疫病文本分词模型。以羊疫病为研究对象,构建了常见疫病文本数据集,将其与通用语料PKU结合,利用BERT(Bidirectional encoder representation from transformers)预训练语言模型进行文本向量化表示;通过双向长短时记忆网络(Bidirectional long short-term memory network,BiLSTM)获取上下文语义特征;由条件随机场(Conditional random field,CRF)输出全局最优标签序列。基于此,在CRF层后加入畜禽疫病领域词典进行分词匹配修正,减少在分词过程中出现的疫病名称及短语等造成的歧义切分,进一步提高了分词准确率。实验结果表明,结合词典匹配的BERT-BiLSTM-CRF模型在羊常见疫病文本数据集上的F1值为96.38%,与jieba分词器、BiLSTM-Softmax模型、BiLSTM-CRF模型、未结合词典匹配的本文模型相比,分别提升11.01、10.62、8.3、0.72个百分点,验证了方法的有效性。与单一语料相比,通用语料PKU和羊常见疫病文本数据集结合的混合语料,能够同时对畜禽疫病专业术语及疫病文本中常用词进行准确切分,在通用语料及疫病文本数据集上F1值都达到95%以上,具有较好的模型泛化能力。该方法可用于畜禽疫病文本分词。 展开更多
关键词 畜禽疫病 文本分词 预训练语言模型 双向长短时记忆网络 条件随机场
下载PDF
机器学习算法在降水和气温多模式集成中的应用 被引量:1
7
作者 鞠琴 吴金雨 +5 位作者 王兴平 刘小妮 王逸夫 段远强 吴可馨 蒋晓蕾 《水资源保护》 EI CAS CSCD 北大核心 2024年第3期106-115,共10页
选取CMIP6中5种全球气候模式,利用算术平均、权重平均、多元线性回归、BP神经网络、长短期记忆(LSTM)神经网络和随机森林(RF)等6种多模式集成方法,基于黄河流域水源涵养区历史降水量和气温数据,评估不同集成方法的模拟效果,并选取模拟... 选取CMIP6中5种全球气候模式,利用算术平均、权重平均、多元线性回归、BP神经网络、长短期记忆(LSTM)神经网络和随机森林(RF)等6种多模式集成方法,基于黄河流域水源涵养区历史降水量和气温数据,评估不同集成方法的模拟效果,并选取模拟效果最好的多模式集成方法预估未来SSP1-2.6、SSP2-4.5和SSP5-8.53种情景下黄河流域水源涵养区的降水和气温变化趋势。结果表明:多模式集成能很好地再现基准期降水和气温变化,3种机器学习算法表现相对较好,其中LSTM神经网络最好;在未来3种情景下,多年平均降水量均有所增加,四季降水量变化各有差异;SSP1-2.6情景下年降水量峰值出现在各时段初期,SSP2-4.5和SSP5-8.5情景下的年降水量呈增长趋势,远期下降趋势较明显;3种情景下气温都呈上升趋势,但变化差异较大,增温幅度和速率由小到大为SSP1-2.6、SSP2-4.5、SSP5-8.5,秋季气温增幅最大,冬季最小;多模式集成方法对未来降水量和气温的预估存在较大的不确定性,均表现为中远期大于近期,降水量预估的不确定性比气温大,其中降水量秋冬季不确定性明显大于春夏季。 展开更多
关键词 CMIP6 全球气候模式 多模式集成 LSTM神经网络 黄河流域
下载PDF
基于长短时记忆的农作物生长环境数据预测
8
作者 吴超 周紫静 +3 位作者 黄锦铧 许啸寅 邱洪 彭业萍 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第5期563-573,共11页
针对传统温室农作物生长监控系统控制灵活性差且精确度低等问题,设计了一个面向智慧农业的农作物生长闭环监控系统.引入单变量长短时记忆(long short-term memory,LSTM)网络模型,对土壤含水率、土壤温度和土壤电导率3个农作物生长环境... 针对传统温室农作物生长监控系统控制灵活性差且精确度低等问题,设计了一个面向智慧农业的农作物生长闭环监控系统.引入单变量长短时记忆(long short-term memory,LSTM)网络模型,对土壤含水率、土壤温度和土壤电导率3个农作物生长环境数据进行预测研究.在优化时间步长参数的基础上,分析不同预测步长对单变量LSTM模型预测准确性的影响,采用不同时间段的测试集数据对模型的预测性能和稳定性进行验证.分别采用单变量LSTM模型、最小绝对值收敛和选择算法、随机森林回归、双向LSTM模型和编解码LSTM模型进行预测对比,结果表明,单变量LSTM模型预测的平均绝对误差值和均方根误差值均为最小,模型具有更好的准确性和稳定性.本研究设计的农作物生长闭环监控系统能有效预测农作物的生长环境数据,为农作物监控系统的智能控制提供有效数据支撑. 展开更多
关键词 人工智能 监控系统 预测模型 环境数据 长短时记忆网络 时间序列 智慧农业
下载PDF
融合CNN与BiLSTM模型的短期电能负荷预测
9
作者 杨桂松 高炳涛 何杏宇 《小型微型计算机系统》 CSCD 北大核心 2024年第9期2253-2260,共8页
针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据... 针对卷积神经网络(CNN)在捕捉预测序列间历史相关性方面的不足以及在变量复杂情况下出现的无法精准提取预测关键信息的问题,提出一种将双向长短期记忆网络(BiLSTM)与卷积神经网络结合的CNN-BiLSTM模型.首先,采用数据预处理方法保证数据的正确性和完整性,并对数据进行分析以探究多变量之间的相关性;其次,通过CNN与L1正则化对多维输入特征进行特征筛选,选取与预测相关的重要性特征向量;最后,使用BiLSTM对CNN输出的关键特征信息进行保存,形成向量与预测序列,并通过分析时序特征的潜在特点,提取用户的内在消费模式.实验比较了该模型与其他时序模型在不同时间分辨率下的预测效果,实验结果表明,CNN-BiLSTM模型在不同的回望时间间隔下表现出了最佳的预测性能,能够实现更好的短期负荷预测. 展开更多
关键词 卷积神经网络 双向长短期记忆网络 特征筛选 CNN-BiLSTM模型 短期负荷预测
下载PDF
基于人工神经网络的自然语言处理技术研究 被引量:1
10
作者 陈运财 《工程技术研究》 2024年第8期93-95,共3页
文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记... 文章探讨了基于人工神经网络的自然语言处理技术,首先,阐述了人工神经网络的定义、结构、工作原理,以及与深度学习的关系。其次,详细研究了基于人工神经网络的自然语言处理技术,包括神经网络模型、词嵌入技术、循环神经网络、长短期记忆网络、转换器模型与自注意力机制等,并分析了这些技术面临的挑战。最后,通过实验设计与结果分析验证了所提出方法的有效性。文章研究内容对于推动自然语言处理技术的发展和应用具有重要意义。 展开更多
关键词 自然语言处理技术 人工神经网络 循环神经网络 长短期记忆网络 转换器模型 自注意力机制
下载PDF
基于互信息粒子群优化-长短期记忆神经网络医疗设备运行质量预测模型的慢性呼吸系统疾病诊疗设备智能管理研究
11
作者 刘佳 李静 +1 位作者 穆秋燃 武哲志 《中国医学装备》 2024年第9期107-112,共6页
目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网... 目的:基于互信息粒子群优化(PSO)-长短期记忆(LSTM)神经网络构建医疗设备运行质量预测模型,辅助慢性呼吸系统疾病诊疗设备智能管理。方法:采集设备基本数据、使用数据、维修数据和性能数据进行去噪和标准化处理,构建基于PSO-LSTM神经网络医疗设备运行质量预测模型(简称PSO-LSTM模型),制定设备使用、维护、维修及报废的智能管理方案。选取2019年8月至2023年7月新疆维吾尔自治区人民医院呼吸科临床在用的139台医疗设备,将2019年8月至2021年7月的67台设备采用经验管理模式,2021年8月至2023年7月的72台设备采用智能管理模式。计算传统循环神经网络(RNN)、LSTM神经网络模型训练集和测试集与PSO-LSTM神经网络模型的预测准确性,对比两种管理模式设备管理质量和设备使用操作与技术保障人员以及患者或家属对两种管理模式的管理满意度。结果:PSO-LSTM模型训练集预测准确性的平均绝对百分比误差(MAPE)值和均方根差(RMSE)值分别为0.014和0.008,测试集分别为0.032和0.018,均低于RNN和LSTM模型。采用智能管理模式的设备平均故障频次、平均开机率、管理成本平均增幅、平均维护执行率及平均报废合规率分别为(0.99±0.85)次/年、(95.74±2.16)%、(1.72±1.28)%、(96.49±1.97)%和(97.59±1.49)%,平均故障频次和管理成本平均增幅低于经验管理模式,平均开机率、平均维护执行率和平均报废合规率高于经验管理模式,差异有统计学意义(t=3.297、3.469、2.394、4.187、3.503,P<0.05);设备使用操作与技术保障人员及患者或家属对采用智能管理模式的设备性能、运行质量、管理方式、管理成本以及诊疗效果满意度评分分别为(94.73±1.85)分、(93.38±3.15)分、(93.48±2.02)分、(94.35±2.34)分和(95.14±2.07)分,均高于经验管理模式,差异有统计学意义(t=4.131、3.827、5.716、3.430、3.173,P<0.05)。结论:基于PSO-LSTM神经网络医疗设备运行质量预测模型能更准确地评估设备运行状况,提高医疗设备临床运行质量,改善临床服务满意度。 展开更多
关键词 长短期记忆网络 粒子群优化算法 智能管理 设备运行质量 预测模型
下载PDF
基于Transformer-LSTM的闽南语唇语识别
12
作者 曾蔚 罗仙仙 王鸿伟 《泉州师范学院学报》 2024年第2期10-17,共8页
针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文... 针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文本序列预测.最后,在自建闽南语唇语数据集上进行实验.实验结果表明:模型能有效地提高唇语识别的准确率. 展开更多
关键词 唇语识别 闽南语 TRANSFORMER 长短时记忆网络(LSTM) 用时空卷积神经网络 注意力机制 端到端模型
下载PDF
基于ISSA-LSTM的储麦长期品质预测
13
作者 吴兰 王恒 姚远 《中国粮油学报》 CAS CSCD 北大核心 2024年第9期8-17,共10页
为了解决非时序预测模型无法预测储麦品质时序劣变趋势,以及现有数据驱动的时序预测模型在长期储麦品质预测中因样本不足导致长期预测精度不高的问题,提出一种基于改进麻雀搜索算法(ISSA)优化长短时记忆网络(LSTM)的长期储麦品质预测模... 为了解决非时序预测模型无法预测储麦品质时序劣变趋势,以及现有数据驱动的时序预测模型在长期储麦品质预测中因样本不足导致长期预测精度不高的问题,提出一种基于改进麻雀搜索算法(ISSA)优化长短时记忆网络(LSTM)的长期储麦品质预测模型。首先,提出了一种统计均匀分布方法,利用小麦稳定劣化的生理知识对原始数据进行增强扩容。其次,利用麻雀搜索算法(SSA)对LSTM模型进行优化,克服局部极值点,提高收敛速度。最后,引入t分布函数对SSA位置更新过程进行扰动避免局部最优。结果表明,储麦品质参数中的吸水率、咀嚼度、脂肪酸值和峰值黏度与储藏时间的Spearman相关性较为显著,相关系数均高于0.9,ISSA-LSTM模型预测精度相比于BP、LSTM、SSA-LSTM预测模型分别提高了11.83%、16.98%、26.50%,有助于提高小麦品质预测及分析的准确性。 展开更多
关键词 模式识别与智能系统 储藏小麦品质 预测模型 长短时记忆网络 麻雀搜索算法 统计均匀分布
下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型
14
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
下载PDF
基于CNN-LSTM电力消耗预测模型及系统开发
15
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
下载PDF
安徽省生鲜农产品冷链物流需求预测研究
16
作者 徐超毅 胡望敏 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第4期485-493,共9页
生鲜农产品等冷链产品市场需求快速增长,冷链物流的供给无法满足人们的需求给生鲜农产品带来新的挑战.安徽省作为一个农产品丰富的地区,生鲜农产品的供应对于满足市场需求至关重要.收集了2001~2022年生鲜农产品产量数据,采用反向传播神... 生鲜农产品等冷链产品市场需求快速增长,冷链物流的供给无法满足人们的需求给生鲜农产品带来新的挑战.安徽省作为一个农产品丰富的地区,生鲜农产品的供应对于满足市场需求至关重要.收集了2001~2022年生鲜农产品产量数据,采用反向传播神经网络(Back Propagation Neural Network,BP神经网络)、长短时记忆(long short-term memory,LSTM)、粒子群算法优化的长短期记忆神经网络(Particle Swarm Optimization-Long Short-Term Memory,PSO-LSTM)三种模型进行训练和验证,通过三种模型的对比分析,三种模型相对误差分别为0.13%、0.06%、0.02%.结果表明,PSO-LSTM模型预测精度最高,拟合效果最好,能够有效预测未来四年安徽省生鲜农产品冷链物流需求,以应对不断增长的冷链物流需求压力. 展开更多
关键词 BP神经网络 LSTM模型 PSO-LSTM模型 生鲜农产品冷链物流 需求预测
下载PDF
基于层叠式残差LSTM网络的桥梁非线性地震响应预测 被引量:3
17
作者 廖聿宸 张瑞阳 +2 位作者 林榕 宗周红 吴刚 《工程力学》 EI CSCD 北大核心 2024年第4期47-58,共12页
提出了一种基于层叠式残差长短时记忆神经网络(residual long short-term memory neural network,ResLSTM)的数据驱动建模方法,实现桥梁非线性地震响应预测。该方法利用长短时记忆(long short-term memory, LSTM)网络在长序列回归中的优... 提出了一种基于层叠式残差长短时记忆神经网络(residual long short-term memory neural network,ResLSTM)的数据驱动建模方法,实现桥梁非线性地震响应预测。该方法利用长短时记忆(long short-term memory, LSTM)网络在长序列回归中的优势,并采用残差连接结构降低深度神经网络中的梯度回传难度,提高了有限数据下的深度网络预测性能。同时,通过采用层叠式序列结构,降低深度神经网络隐藏层节点数目,进一步提升深度神经网络的预测精度。随后,通过两跨预应力混凝土连续梁桥与组合梁斜拉桥的数值算例对该方法进行验证。神经网络的训练样本与测试样本均源自桥梁有限元模型的增量动力分析结果。此外,采用该方法成功预测了美国Meloland Overpass桥的地震响应,并与历史监测数据进行对比验证。结果表明:ResLSTM网络是一种鲁棒性良好、计算效率高的非线性地震响应预测方法,能够利用少量数据快速准确地预测桥梁结构在地震作用下的动力响应,在桥梁抗震性能评价中具有重要的应用潜力。 展开更多
关键词 桥梁工程 抗震分析 长短时记忆神经网络 残差神经网络 非线性响应建模
下载PDF
基于LSTM算法的冷轧机架振动动态预警分析
18
作者 马志刚 《锻压装备与制造技术》 2024年第2期153-156,共4页
在实际生产阶段冷轧机具有多态性与时变性,需要对轧机振动动态预警进行转换形成包含多变量的时间序列预警。建立了一种基于LSTM算法的冷轧机振动预警模型。研究结果表明:提高步长后模型预警性能获得明显提升,随着步长到达5后,模型表现... 在实际生产阶段冷轧机具有多态性与时变性,需要对轧机振动动态预警进行转换形成包含多变量的时间序列预警。建立了一种基于LSTM算法的冷轧机振动预警模型。研究结果表明:提高步长后模型预警性能获得明显提升,随着步长到达5后,模型表现也逐渐变差,步长为4时,获得了最优预警效果。结合实际振动报警阈值,在预警振动能量值升高至阈值75%时激发形成振动预报,第一卷与第二卷分别提前预报1.6s与3.2s。该研究对控制板材的精度具有很好的指导意义。 展开更多
关键词 轧机振动 长短时记忆循环神经网络 预报 模型
下载PDF
基于LSTM-AT的温室空气温度预测模型构建 被引量:1
19
作者 张观山 丁小明 +5 位作者 何芬 尹义蕾 李天华 任吉傲 周俊毅 齐飞 《农业工程学报》 EI CAS CSCD 北大核心 2024年第18期194-201,共8页
构建精确的温室空气温度预测模型是采用模型预测控制等控制算法实现温室空气温度精准控制的前提条件。长短记忆神经网络(long short-term memory,LSTM)以处理时间序列数据方面的优势而广泛应用于温室空气温度预测,然而其面对长时间序列... 构建精确的温室空气温度预测模型是采用模型预测控制等控制算法实现温室空气温度精准控制的前提条件。长短记忆神经网络(long short-term memory,LSTM)以处理时间序列数据方面的优势而广泛应用于温室空气温度预测,然而其面对长时间序列数据存在由于数据遗忘而导致温室空气温度预测精度降低的问题。为解决以上问题,该研究将LSTM模型与注意力机制(attention mechanism,AT)结合构建LSTM-AT模型,根据LSTM模型隐藏层输出状态重要性程度为隐藏层输出分配权重,以提高温室空气温度长时间预测精度。该研究在不同预测时长(12、24和48 h)和不同天气状况两种情况下将LSTM-AT模型与递归神经网络、门控循环单元、双向长短记忆网络、LSTM模型进行对比。结果表明,LSTM-AT模型空气温度预测值与测量值变化趋势较为一致,模型计算值与空气温度测量值的决定系数最小为0.95,均方根误差最大为1.34℃,平均绝对误差最大为10.51%;LSTM-AT模型、LSTM模型、门控循环单元、递归神经网络、双向长短记忆网络5种模型温室空气温度预测均方根误差平均值分别为0.89、1.42、1.89、2.10、1.51℃,平均绝对百分比误差平均值分别为4.26%、8.96%、13.57%、17.70%、10.67%。由此可知,相较于其他4种模型,该研究提出的LSTM-AT模型具有更高的预测精度,能够精确预测温室空气温度。 展开更多
关键词 温室 空气温度 长短记忆神经网络 注意力机制 预测模型
下载PDF
基于改进CNN-LSTM和RF的铁水KR脱硫预测模型 被引量:1
20
作者 胡佳辉 熊凌 +1 位作者 但斌斌 吴经纬 《武汉科技大学学报》 CAS 北大核心 2024年第4期254-263,共10页
为实现较高精度的脱硫剂加入量预测,有效提高生产效益,本文提出一种基于改进卷积神经网络(CNN)-长短期记忆(LSTM)网络和随机森林(RF)结合的铁水脱硫两步预测模型。考虑到模型输入数据的相关性,利用皮尔逊相关系数确定各输入参数的相关... 为实现较高精度的脱硫剂加入量预测,有效提高生产效益,本文提出一种基于改进卷积神经网络(CNN)-长短期记忆(LSTM)网络和随机森林(RF)结合的铁水脱硫两步预测模型。考虑到模型输入数据的相关性,利用皮尔逊相关系数确定各输入参数的相关性并筛选特征。模型以CNN-LSTM为基础,增加卷积层和残差连接,在提高挖掘数据的高维特征信息的同时避免网络退化。为增加网络对特征的区分和关注能力,引入多头注意力机制,让网络更加关注特征中的重要信息。使用贝叶斯优化RF超参数构建误差预测模型从而实现残差推理,对改进的CNN-LSTM模型预测结果进行修正。以现场采集的数据进行实验,结果表明,与CNN-LSTM模型相比,本文模型的拟合精度R2提升了17.11%,平均绝对值误差MAE降低了24.85%,均方根误差RMSE降低了30.18%,平均绝对百分比误差MAPE降低了28.33%。 展开更多
关键词 KR脱硫模型 卷积神经网络 长短期记忆网络 注意力机制 随机森林
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部