期刊文献+
共找到811篇文章
< 1 2 41 >
每页显示 20 50 100
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:7
1
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis
2
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems long short-term memory Attention mechanism neural networks
下载PDF
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network
3
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
A forecasting model for wave heights based on a long short-term memory neural network 被引量:4
4
作者 Song Gao Juan Huang +3 位作者 Yaru Li Guiyan Liu Fan Bi Zhipeng Bai 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第1期62-69,共8页
To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with... To explore new operational forecasting methods of waves,a forecasting model for wave heights at three stations in the Bohai Sea has been developed.This model is based on long short-term memory(LSTM)neural network with sea surface wind and wave heights as training samples.The prediction performance of the model is evaluated,and the error analysis shows that when using the same set of numerically predicted sea surface wind as input,the prediction error produced by the proposed LSTM model at Sta.N01 is 20%,18%and 23%lower than the conventional numerical wave models in terms of the total root mean square error(RMSE),scatter index(SI)and mean absolute error(MAE),respectively.Particularly,for significant wave height in the range of 3–5 m,the prediction accuracy of the LSTM model is improved the most remarkably,with RMSE,SI and MAE all decreasing by 24%.It is also evident that the numbers of hidden neurons,the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy.However,the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used.The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training.Overall,long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting. 展开更多
关键词 long short-term memory marine forecast neural network significant wave height
下载PDF
Real-time UAV path planning based on LSTM network
5
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
下载PDF
A Novel Parameter-Optimized Recurrent Attention Network for Pipeline Leakage Detection 被引量:1
6
作者 Tong Sun Chuang Wang +2 位作者 Hongli Dong Yina Zhou Chuang Guan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1064-1076,共13页
Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing... Accurate detection of pipeline leakage is essential to maintain the safety of pipeline transportation.Recently,deep learning(DL)has emerged as a promising tool for pipeline leakage detection(PLD).However,most existing DL methods have difficulty in achieving good performance in identifying leakage types due to the complex time dynamics of pipeline data.On the other hand,the initial parameter selection in the detection model is generally random,which may lead to unstable recognition performance.For this reason,a hybrid DL framework referred to as parameter-optimized recurrent attention network(PRAN)is presented in this paper to improve the accuracy of PLD.First,a parameter-optimized long short-term memory(LSTM)network is introduced to extract effective and robust features,which exploits a particle swarm optimization(PSO)algorithm with cross-entropy fitness function to search for globally optimal parameters.With this framework,the learning representation capability of the model is improved and the convergence rate is accelerated.Moreover,an anomaly-attention mechanism(AM)is proposed to discover class discriminative information by weighting the hidden states,which contributes to amplifying the normalabnormal distinguishable discrepancy,further improving the accuracy of PLD.After that,the proposed PRAN not only implements the adaptive optimization of network parameters,but also enlarges the contribution of normal-abnormal discrepancy,thereby overcoming the drawbacks of instability and poor generalization.Finally,the experimental results demonstrate the effectiveness and superiority of the proposed PRAN for PLD. 展开更多
关键词 attention mechanism(AM) long shortterm memory(lstm) parameter-optimized recurrent attention network(PRAN) particle swarm optimization(PSO) pipeline leakage detection(PLD)
下载PDF
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:14
7
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron recurrent neural networks long short-term memory Gated recurrent unit
下载PDF
Synthetic well logs generation via Recurrent Neural Networks 被引量:4
8
作者 ZHANG Dongxiao CHEN Yuntian MENG Jin 《Petroleum Exploration and Development》 2018年第4期629-639,共11页
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app... To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation. 展开更多
关键词 well log GENERATING method machine learning Fully Connected neural network recurrent neural network long short-term memory artificial INTELLIGENCE
下载PDF
Practical Options for Adopting Recurrent Neural Network and Its Variants on Remaining Useful Life Prediction 被引量:1
9
作者 Youdao Wang Yifan Zhao Sri Addepalli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期32-51,共20页
The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been... The remaining useful life(RUL)of a system is generally predicted by utilising the data collected from the sensors that continuously monitor different indicators.Recently,different deep learning(DL)techniques have been used for RUL prediction and achieved great success.Because the data is often time-sequential,recurrent neural network(RNN)has attracted significant interests due to its efficiency in dealing with such data.This paper systematically reviews RNN and its variants for RUL prediction,with a specific focus on understanding how different components(e.g.,types of optimisers and activation functions)or parameters(e.g.,sequence length,neuron quantities)affect their performance.After that,a case study using the well-studied NASA’s C-MAPSS dataset is presented to quantitatively evaluate the influence of various state-of-the-art RNN structures on the RUL prediction performance.The result suggests that the variant methods usually perform better than the original RNN,and among which,Bi-directional Long Short-Term Memory generally has the best performance in terms of stability,precision and accuracy.Certain model structures may fail to produce valid RUL prediction result due to the gradient vanishing or gradient exploring problem if the parameters are not chosen appropriately.It is concluded that parameter tuning is a crucial step to achieve optimal prediction performance. 展开更多
关键词 Remaining useful life prediction Deep learning recurrent neural network long short-term memory Bi-directional long short-term memory Gated recurrent unit
下载PDF
Recurrent Convolutional Neural Network MSER-Based Approach for Payable Document Processing 被引量:1
10
作者 Suliman Aladhadh Hidayat Ur Rehman +1 位作者 Ali Mustafa Qamar Rehan Ullah Khan 《Computers, Materials & Continua》 SCIE EI 2021年第12期3399-3411,共13页
A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an e... A tremendous amount of vendor invoices is generated in the corporate sector.To automate the manual data entry in payable documents,highly accurate Optical Character Recognition(OCR)is required.This paper proposes an end-to-end OCR system that does both localization and recognition and serves as a single unit to automate payable document processing such as cheques and cash disbursement.For text localization,the maximally stable extremal region is used,which extracts a word or digit chunk from an invoice.This chunk is later passed to the deep learning model,which performs text recognition.The deep learning model utilizes both convolution neural networks and long short-term memory(LSTM).The convolution layer is used for extracting features,which are fed to the LSTM.The model integrates feature extraction,modeling sequence,and transcription into a unified network.It handles the sequences of unconstrained lengths,independent of the character segmentation or horizontal scale normalization.Furthermore,it applies to both the lexicon-free and lexicon-based text recognition,and finally,it produces a comparatively smaller model,which can be implemented in practical applications.The overall superior performance in the experimental evaluation demonstrates the usefulness of the proposed model.The model is thus generic and can be used for other similar recognition scenarios. 展开更多
关键词 Character recognition text spotting long short-term memory recurrent convolutional neural networks
下载PDF
Visual analytics tool for the interpretation of hidden states in recurrent neural networks
11
作者 Rafael Garcia Tanja Munz Daniel Weiskopf 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期233-245,共13页
In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect ... In this paper,we introduce a visual analytics approach aimed at helping machine learning experts analyze the hidden states of layers in recurrent neural networks.Our technique allows the user to interactively inspect how hidden states store and process information throughout the feeding of an input sequence into the network.The technique can help answer questions,such as which parts of the input data have a higher impact on the prediction and how the model correlates each hidden state configuration with a certain output.Our visual analytics approach comprises several components:First,our input visualization shows the input sequence and how it relates to the output(using color coding).In addition,hidden states are visualized through a nonlinear projection into a 2-D visualization space using t-distributed stochastic neighbor embedding to understand the shape of the space of the hidden states.Trajectories are also employed to show the details of the evolution of the hidden state configurations.Finally,a time-multi-class heatmap matrix visualizes the evolution of the expected predictions for multi-class classifiers,and a histogram indicates the distances between the hidden states within the original space.The different visualizations are shown simultaneously in multiple views and support brushing-and-linking to facilitate the analysis of the classifications and debugging for misclassified input sequences.To demonstrate the capability of our approach,we discuss two typical use cases for long short-term memory models applied to two widely used natural language processing datasets. 展开更多
关键词 Visual analytics VISUALIZATION Machine learning Classification recurrent neural networks long shortterm memory Hidden states INTERPRETABILITY Natural language processing Nonlinear projection
下载PDF
A Prediction Method of Trend-Type Capacity Index Based on Recurrent Neural Network
12
作者 Wenxiao Wang Xiaoyu Li +2 位作者 Yin Ding Feizhou Wu Shan Yang 《Journal of Quantum Computing》 2021年第1期25-33,共9页
Due to the increase in the types of business and equipment in telecommunications companies,the performance index data collected in the operation and maintenance process varies greatly.The diversity of index data makes... Due to the increase in the types of business and equipment in telecommunications companies,the performance index data collected in the operation and maintenance process varies greatly.The diversity of index data makes it very difficult to perform high-precision capacity prediction.In order to improve the forecasting efficiency of related indexes,this paper designs a classification method of capacity index data,which divides the capacity index data into trend type,periodic type and irregular type.Then for the prediction of trend data,it proposes a capacity index prediction model based on Recurrent Neural Network(RNN),denoted as RNN-LSTM-LSTM.This model includes a basic RNN,two Long Short-Term Memory(LSTM)networks and two Fully Connected layers.The experimental results show that,compared with the traditional Holt-Winters,Autoregressive Integrated Moving Average(ARIMA)and Back Propagation(BP)neural network prediction model,the mean square error(MSE)of the proposed RNN-LSTM-LSTM model are reduced by 11.82%and 20.34%on the order storage and data migration,which has greatly improved the efficiency of trend-type capacity index prediction. 展开更多
关键词 recurrent neural network(RNN) long short-term memory(lstm)network capacity prediction
下载PDF
基于Transformer-LSTM的闽南语唇语识别
13
作者 曾蔚 罗仙仙 王鸿伟 《泉州师范学院学报》 2024年第2期10-17,共8页
针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文... 针对端到端句子级闽南语唇语识别的问题,提出一种基于Transformer和长短时记忆网络(LSTM)的编解码模型.编码器采用时空卷积神经网络及Transformer编码器用于提取唇读序列时空特征,解码器采用长短时记忆网络并结合交叉注意力机制用于文本序列预测.最后,在自建闽南语唇语数据集上进行实验.实验结果表明:模型能有效地提高唇语识别的准确率. 展开更多
关键词 唇语识别 闽南语 TRANSFORMER 长短时记忆网络(lstm) 用时空卷积神经网络 注意力机制 端到端模型
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究
14
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测
15
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(lstm) 注意力机制 卷积神经网络(CNN)
下载PDF
Dynamic Hand Gesture Recognition Based on Short-Term Sampling Neural Networks 被引量:12
16
作者 Wenjin Zhang Jiacun Wang Fangping Lan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第1期110-120,共11页
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo... Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures. 展开更多
关键词 Convolutional neural network(ConvNet) hand gesture recognition long short-term memory(lstm)network short-term sampling transfer learning
下载PDF
基于Bi-LSTM的浅层地下双孔洞探测技术
17
作者 梁靖 张红 +3 位作者 叶晨 周立成 刘泽佳 汤立群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第6期778-783,共6页
文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,... 文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,并将反射信号作为深度学习的输入,以输出孔洞信息,建立一种新型的智能孔洞探测方法。结果表明,双向长短期记忆神经网络(bidirectional long short-term memory neural network,Bi-LSTM)的预测模型对于地下双孔洞的工况具有较高的识别准确率,在容许误差为2 m的情况下,孔洞位置和直径的预测准确率可达95.3%。该研究验证了基于深度学习的多孔洞探测技术的可行性,有望为施工前期土层地质状况的评估提供技术保障。 展开更多
关键词 地下孔洞探测 桩锤激震 深度学习 双向长短期记忆神经网络(Bi-lstm) 有限元仿真
下载PDF
基于相关性检验的VMD-LSTM耦合模型月径流模拟研究
18
作者 刘声洪 SOOMRO Shan-E-Hyder +3 位作者 李颖 李英海 程雄 杨少康 《水资源与水工程学报》 CSCD 北大核心 2024年第2期71-82,共12页
近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用V... 近年来,极端强降雨和干旱事件频发,流域水文过程的不确定性变化加剧,使得流域中长期径流预测的难度增加。为提升LSTM(长短期记忆神经网络)模型对径流时序变化的捕捉及拟合能力,以博阳河流域为研究区域,选取月降雨、蒸发及流量数据,利用VMD(变分模态分解)和相关性检验,排除无关频率分量对LSTM模型规律学习的干扰,以达到模型输入优选的目的;此外,还考虑了VMD与LSTM模型的不同耦合方式对模型精度和稳定性的影响,最终优选出二者兼具的VMD-LSTM月径流耦合模式。结果表明:VMD-LSTM耦合模型可显著提升模拟精度,但在模型稳定性方面有所欠缺;而基于相关性检验的VMD-LSTM耦合模型不仅能够进一步提高模型精度,并且在模型的稳定性方面也有所改进。在基于相关性检验的VMD-LSTM耦合模型的不同耦合方式对比中,对输入、输出均进行VMD分解且对输入变量进行优选的D_(1)耦合方案的模拟效果最好,其60次模拟计算的NSE均为0.98以上且稳定性极佳;另外,在分析方案D_(1)的可解释性时发现历史径流对于LSTM模型的影响要比降雨和蒸发大。该研究结论可为流域水资源管理提供精准可信的中长期径流模拟成果。 展开更多
关键词 相关性检验 变分模态分解 长短期记忆神经网络 径流模拟 博阳河流域
下载PDF
Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature
19
作者 Donghun Wang Jonghyun Lee +1 位作者 Minchan Kim Insoo Lee 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2025-2040,共16页
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter... Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate. 展开更多
关键词 Lithium-ionbattery state of charge multilayer neural network long short-term memory gated recurrent unit vehicle driving simulator
下载PDF
基于CNN-LSTM的永磁同步风力发电机转子偏心早期故障诊断
20
作者 谢彤彤 刘颖明 +1 位作者 王晓东 高兴 《电器与能效管理技术》 2024年第3期1-6,共6页
对永磁同步风力发电机转子早期动偏心和早期静偏心故障的特点和诊断方法进行研究,通过Ansys建立永磁同步风力发电机的早期动偏心和早期静偏心模型,提出一种基于CNN-LSTM的故障诊断和分类方法。通过对永磁同步风力发电机定子三相电流及其... 对永磁同步风力发电机转子早期动偏心和早期静偏心故障的特点和诊断方法进行研究,通过Ansys建立永磁同步风力发电机的早期动偏心和早期静偏心模型,提出一种基于CNN-LSTM的故障诊断和分类方法。通过对永磁同步风力发电机定子三相电流及其Welch功率谱数据的分析,判断是否为正常的动偏心趋势和静偏心趋势;然后通过空载电动势对不同故障程度进行分类。最后,在神经网络模型中完成故障诊断和分类任务。所提方法大大降低了设备维修成本,可准确快速地识别转子早期偏心故障。 展开更多
关键词 卷积神经网络 长短期记忆网络 故障诊断 特征提取
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部