期刊文献+
共找到1,674篇文章
< 1 2 84 >
每页显示 20 50 100
Modeling injection-induced fault slip using long short-term memory networks
1
作者 Utkarsh Mital Mengsu Hu +2 位作者 Yves Guglielmi James Brown Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4354-4368,共15页
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an... Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections. 展开更多
关键词 Machine learning long short-term memory networks FAULT Fluid injection
下载PDF
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
2
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network long short-term memory network
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
3
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
4
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:6
5
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction long short-term memory Deep learning Geo-Studio software Machine learning model
下载PDF
Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis 被引量:5
6
作者 Shanwei Xiong Li Zhou +1 位作者 Yiyang Dai Xu Ji 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期1-14,共14页
A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively ... A correct and timely fault diagnosis is important for improving the safety and reliability of chemical processes. With the advancement of big data technology, data-driven fault diagnosis methods are being extensively used and still have considerable potential. In recent years, methods based on deep neural networks have made significant breakthroughs, and fault diagnosis methods for industrial processes based on deep learning have attracted considerable research attention. Therefore, we propose a fusion deeplearning algorithm based on a fully convolutional neural network(FCN) to extract features and build models to correctly diagnose all types of faults. We use long short-term memory(LSTM) units to expand our proposed FCN so that our proposed deep learning model can better extract the time-domain features of chemical process data. We also introduce the attention mechanism into the model, aimed at highlighting the importance of features, which is significant for the fault diagnosis of chemical processes with many features. When applied to the benchmark Tennessee Eastman process, our proposed model exhibits impressive performance, demonstrating the effectiveness of the attention-based LSTM FCN in chemical process fault diagnosis. 展开更多
关键词 Safety Fault diagnosis Process systems long short-term memory Attention mechanism Neural networks
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
7
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:2
8
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
9
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(lstm) principal component analysis(PCA)
下载PDF
基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别 被引量:1
10
作者 王兴隆 许晏丰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第1期116-124,共9页
为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对... 为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对其进行轮廓扩展,以航空器速度作为安全距离权重,通过射线法实现轮廓冲突的判定;并以乌鲁木齐地窝堡机场为例进行验证,利用训练完成的轨迹预测模型预测飞行区航空器滑行轨迹,以识别航空器轮廓间的滑行冲突。结果表明:AM-LSTM预测模型能够准确预测飞行区航空器运动轨迹。未来3 s内轨迹位置预测的平均位移误差为1.05 m,轨迹点位置预测精准性可达94.37%,故能在轨迹预测的基础上精确识别滑行冲突风险,有利于保障飞行区的安全运行。 展开更多
关键词 注意力机制(AM) 长短期记忆网络(lstm) 飞行区 航空器滑行 滑行轨迹
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
11
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(lstm) 注意力机制 卷积神经网络(CNN)
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:2
12
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:1
13
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(lstm)模型 组合预测模型
下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:1
14
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 GA-lstm 灰色关联法
下载PDF
改进蜣螂算法优化LSTM的光伏阵列故障诊断 被引量:1
15
作者 李斌 高鹏 郭自强 《电力系统及其自动化学报》 CSCD 北大核心 2024年第8期70-78,共9页
为提高光伏阵列故障诊断精度,提出一种基于变分模态分解VMD(variational mode decomposition)和改进蜣螂算法IDBO(improved dung beetle optimizer)优化长短期记忆LSTM(long short-term memory)网络的光伏阵列故障诊断方法。首先,针对... 为提高光伏阵列故障诊断精度,提出一种基于变分模态分解VMD(variational mode decomposition)和改进蜣螂算法IDBO(improved dung beetle optimizer)优化长短期记忆LSTM(long short-term memory)网络的光伏阵列故障诊断方法。首先,针对蜣螂算法DBO(dung beetle optimizer)收敛精度低且易陷入局部最优的问题,提出一种融合Levy飞行策略、T分布扰动策略及多种群机制的IDBO算法,通过与DBO、麻雀搜索算法、鲸鱼优化算法寻优测试对比,证明IDBO算法的优越性,再与LSTM结合搭建IDBO-LSTM故障诊断模型。其次,为充分挖掘故障特征,利用VMD提取故障数据多个层面的特征分量,作为IDBO-LSTM模型输入量。最后,实验对比结果表明,该方法的故障诊断准确率达到98.34%,优于其他5种模型,证明了所提方法的可行性及优越性。 展开更多
关键词 光伏阵列 改进蜣螂算法 变分模态分解 长短期记忆 故障诊断
下载PDF
基于CNN-LSTM和卷复制方法的高可用系统设计方法
16
作者 张焱 李新建 +4 位作者 王畅 章建军 陈小虎 邹鑫灏 严智 《南京邮电大学学报(自然科学版)》 北大核心 2024年第4期114-121,共8页
针对单机服务器存在的单点故障问题,以及主备双机中存在的逻辑故障导致数据丢失的问题,设计了一种基于卷积和长短期记忆神经网络(CNN-LSTM)和卷复制方法的HA(High Availability)系统。系统至少包含两个节点,一个主节点以及一个或多个备... 针对单机服务器存在的单点故障问题,以及主备双机中存在的逻辑故障导致数据丢失的问题,设计了一种基于卷积和长短期记忆神经网络(CNN-LSTM)和卷复制方法的HA(High Availability)系统。系统至少包含两个节点,一个主节点以及一个或多个备用节点,主节点和备节点之间支持主备切换。每个服务器节点上包含4个模块,分别是负责接收配置信息与读写请求的代理模块;进行磁盘读写操作和重定向读写的磁盘I/O(输入输出)模块;负责主备节点间备份快照、映射表、数据块复制的卷复制模块以及基于CNN-LSTM进行状态检测的高可用模块。实验表明,该系统不仅可以解决单点故障问题,也可以解决主备双机集群中无法解决的逻辑错误问题;同时基于CNN-LSTM方法,自动针对服务器的运行健康状态进行分析和预测,可以根据预测结果自动通知管理员进行处理或自动进行主备切换。 展开更多
关键词 卷复制 数据丢失 快照 CNN-lstm 高可用系统
下载PDF
基于多维可预知特征的TCN-LSTM城轨短期客流预测
17
作者 赵利强 李瑞森 +2 位作者 唐水雄 唐金金 张涛 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期86-96,共11页
地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外... 地铁客流量波动受众多因素影响,准确的客流预测数据有利于制定更高效的行车控制方案和客流管控方案。为提高客流预测精度,提出一种基于多维可预知特征的时序卷积神经网络-长短期记忆神经网络模型(TCNLSTM)地铁短期客流预测方法。考虑外部因素的影响,引入Spearman相关系数分析并提取日期、天气等可预知特征及其状态集,以提升预测精度,缩小特征空间,克服了冗余特征数据导致的模型过于复杂问题;通过融合时序卷积神经网络(TCN)提取的客流时间序列特征和可预知特征状态集构建了长短期记忆神经网络(LSTM)层输入,组合模型学习客流与外部影响因素的长短期依赖,从而实现常规日、节假日、不同天气等多场景下的短期客流预测。基于某西南城市地铁刷卡交易数据,对比差分整合移动平均自回归模型(ARIMA)、TCN、LSTM及TCN-LSTM模型的短期客流预测结果,得出组合模型的总体平均绝对误差(MAE)值比其他方法低27%~48%,均方误差(MSE)值低13%~35%,平均绝对百分比误差(MAPE)值低2.8%~6.7%,上述3项指标均表明TCN-LSTM模型的客流预测效果更好。此外,对比实验表明通过融入提取的可预知特征数据,TCN-LSTM模型在测试集上的预测误差评价指标明显降低,所提方法能有效提高地铁短期客流预测精度。 展开更多
关键词 城市轨道交通 客流预测 长短期记忆神经网络(lstm) 时序卷积神经网络(TCN) Spearman相关系数
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
18
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(lstm)神经网络 鲁棒性
下载PDF
组合模型对管道腐蚀速率预测的效能研究--基于注意力机制增强的CNN与LSTM模型
19
作者 骆正山 杜丹 +1 位作者 骆济豪 王小完 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4263-4269,共7页
为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。... 为评估卷积神经网络(Convolutional Neural Network,CNN)、长短期记忆(Long Short-Term Memory,LSTM)网络及结合的CNN-LSTM模型在管道腐蚀速率预测中的性能表现,特别引入注意力机制,以期提高模型对关键特征的捕捉能力和预测的准确性。分析影响管道腐蚀速率的环境因素作为模型输入,并通过注意力机制优化特征表示。结果表明,结合注意力机制的CNN-LSTM模型在准确性和可靠性上超越了单独的CNN或LSTM模型。这一结果不仅展示了深度学习模型通过技术增强了处理复杂数据的能力,也为实际工业应用中的时间序列预测提供了新的视角,同时证实了利用深度学习技术对管道腐蚀速率进行精确预测的可行性和有效性。 展开更多
关键词 安全工程 管道腐蚀速率预测 卷积神经网络(CNN) 长短期记忆(lstm) 注意力机制 时间序列分析
下载PDF
基于VMD-SSA-LSTM的架空输电导线覆冰预测模型
20
作者 陈彬 徐志明 +4 位作者 贾燕峰 丁锐鑫 张少峰 李飚 王佳琳 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第4期105-112,共8页
针对输电导线覆冰过程间断性强且波动性大而导致的现有模型预测精度不高的问题,从覆冰厚度数据的时序信息和气象信息出发,提出一种基于变分模态分解(variational mode decomposition,VMD)的麻雀搜索算法(sparrow search algorithm,SSA)... 针对输电导线覆冰过程间断性强且波动性大而导致的现有模型预测精度不高的问题,从覆冰厚度数据的时序信息和气象信息出发,提出一种基于变分模态分解(variational mode decomposition,VMD)的麻雀搜索算法(sparrow search algorithm,SSA)优化长短期记忆网络(long short-term memory network,LSTM)的覆冰组合预测模型.该方法首先使用VMD分解覆冰厚度数据,降低了原始序列的不稳定性,得到具有不同中心频率的本征模态分量;其次,采用SSA算法对LSTM中的3个参数进行寻优;最后,对模态分量分别建立LSTM预测模型,将各个模态分量的预测值叠加为覆冰厚度的总预测值.通过实例仿真,对所提预测模型进行验证.结果表明:VMD-SSA-LSTM组合模型与其他模型相比,其预测精度有进一步提高,验证了所提方法的有效性. 展开更多
关键词 输电导线 覆冰预测 变分模态分解 麻雀搜索算法 长短期记忆网络
下载PDF
上一页 1 2 84 下一页 到第
使用帮助 返回顶部