To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on...To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.展开更多
In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is es...In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.展开更多
In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dime...In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.展开更多
基金supported by the Natural Science Basic Research Prog ram of Shaanxi(2022JQ-593)。
文摘To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning.
文摘In dense pedestrian tracking,frequent object occlusions and close distances between objects cause difficulty when accurately estimating object trajectories.In this study,a conditional random field tracking model is established by using a visual long short term memory network in the three-dimensional(3D)space and the motion estimations jointly performed on object trajectory segments.Object visual field information is added to the long short term memory network to improve the accuracy of the motion related object pair selection and motion estimation.To address the uncertainty of the length and interval of trajectory segments,a multimode long short term memory network is proposed for the object motion estimation.The tracking performance is evaluated using the PETS2009 dataset.The experimental results show that the proposed method achieves better performance than the tracking methods based on the independent motion estimation.
基金the National Natural Science Foundation of China(No.61772417,61634004,61602377)Key R&D Program Projects in Shaanxi Province(No.2017GY-060)Shaanxi Natural Science Basic Research Project(No.2018JM4018).
文摘In order to effectively solve the problems of low accuracy,large amount of computation and complex logic of deep learning algorithms in behavior recognition,a kind of behavior recognition based on the fusion of 3 dimensional batch normalization visual geometry group(3D-BN-VGG)and long short-term memory(LSTM)network is designed.In this network,3D convolutional layer is used to extract the spatial domain features and time domain features of video sequence at the same time,multiple small convolution kernels are stacked to replace large convolution kernels,thus the depth of neural network is deepened and the number of network parameters is reduced.In addition,the latest batch normalization algorithm is added to the 3-dimensional convolutional network to improve the training speed.Then the output of the full connection layer is sent to LSTM network as the feature vectors to extract the sequence information.This method,which directly uses the output of the whole base level without passing through the full connection layer,reduces the parameters of the whole fusion network to 15324485,nearly twice as much as those of 3D-BN-VGG.Finally,it reveals that the proposed network achieves 96.5%and 74.9%accuracy in the UCF-101 and HMDB-51 respectively,and the algorithm has a calculation speed of 1066 fps and an acceleration ratio of 1,which has a significant predominance in velocity.