为了降低车联网(Long Term Evolution-Vehicle to Everything,LTE-V)终端间的相互干扰并提升通信的可靠性,提出通过资源分配和拥塞控制来解决资源碰撞的问题。依据信道忙率(Channel Busy Ratio,CBR)划分拥塞等级,融合资源分配与拥塞控...为了降低车联网(Long Term Evolution-Vehicle to Everything,LTE-V)终端间的相互干扰并提升通信的可靠性,提出通过资源分配和拥塞控制来解决资源碰撞的问题。依据信道忙率(Channel Busy Ratio,CBR)划分拥塞等级,融合资源分配与拥塞控制提出相应的方案,形成资源碰撞避免机制。为了减少重选资源时发生的碰撞,提出了资源重选竞争退避机制以降低重选带来的不确定性;针对拥塞导致的碰撞,改变调制编码策略从而优化资源占用。仿真结果表明,与标准中基于感知的半持续调度(Semi-persistent Scheduling,SPS)相比,所提出的机制在传输距离为300 m时可以实现0.85以上的数据包投递率,有效减少资源碰撞,提升传输可靠性。展开更多
We analyzed and improved a collision avoidance strategy, which was supported by Long Term EvolutionVehicle(LTE-V)-based Vehicle-to-Vehicle(V2 V) communication, for automated vehicles. This work was completed in two st...We analyzed and improved a collision avoidance strategy, which was supported by Long Term EvolutionVehicle(LTE-V)-based Vehicle-to-Vehicle(V2 V) communication, for automated vehicles. This work was completed in two steps. In the first step, we analyzed the probability distribution of message transmission time, which was conditional on transmission distance and vehicle density. Our analysis revealed that transmission time exhibited a near-linear increase with distance and density. We also quantified the trade-off between high/low resource reselection probabilities to improve the setting of media access parameters. In the second step, we studied the required safety distance in accordance with the response time, i.e., the transmission time, derived on the basis of a novel concept of Responsibility-Sensitive Safety(RSS). We improved the strategy by considering the uncertainty of response time and its dependence on vehicle distance and density. We performed theoretical analysis and numerical testing to illustrate the effectiveness of the improved robust RSS strategy. Our results enhance the practicability of building driverless highways with special lanes reserved for the exclusive use of LTE-V vehicles.展开更多
针对国内地铁的车-地无线通信技术,将LTE(long term evolution,长期演进)与WLAN(wireless local area networks,无线局域网)技术进行对比,提出一套LTE组网方案。针对该方案,分析下行链路预算,对LTE基站的覆盖能力进行评估,认为引入LTE后...针对国内地铁的车-地无线通信技术,将LTE(long term evolution,长期演进)与WLAN(wireless local area networks,无线局域网)技术进行对比,提出一套LTE组网方案。针对该方案,分析下行链路预算,对LTE基站的覆盖能力进行评估,认为引入LTE后,地铁中覆盖了多频段的无线通信系统;由于系统间频率相近,无线信号之间容易形成干扰。从干扰形成的角度分析干扰的成因,定量计算系统间的隔离度,从技术和工程建设角度给出减少干扰的措施。展开更多
文摘为了降低车联网(Long Term Evolution-Vehicle to Everything,LTE-V)终端间的相互干扰并提升通信的可靠性,提出通过资源分配和拥塞控制来解决资源碰撞的问题。依据信道忙率(Channel Busy Ratio,CBR)划分拥塞等级,融合资源分配与拥塞控制提出相应的方案,形成资源碰撞避免机制。为了减少重选资源时发生的碰撞,提出了资源重选竞争退避机制以降低重选带来的不确定性;针对拥塞导致的碰撞,改变调制编码策略从而优化资源占用。仿真结果表明,与标准中基于感知的半持续调度(Semi-persistent Scheduling,SPS)相比,所提出的机制在传输距离为300 m时可以实现0.85以上的数据包投递率,有效减少资源碰撞,提升传输可靠性。
基金supported in part by the National Natural Science Foundation of China (No. 61673233)Beijing Municipal Science and Technology Program (No. D171100004917001/2)the Key Technologies Research and Development Program of the Thirteenth Five-Year Plan of China (No. 2018YFB1600600)
文摘We analyzed and improved a collision avoidance strategy, which was supported by Long Term EvolutionVehicle(LTE-V)-based Vehicle-to-Vehicle(V2 V) communication, for automated vehicles. This work was completed in two steps. In the first step, we analyzed the probability distribution of message transmission time, which was conditional on transmission distance and vehicle density. Our analysis revealed that transmission time exhibited a near-linear increase with distance and density. We also quantified the trade-off between high/low resource reselection probabilities to improve the setting of media access parameters. In the second step, we studied the required safety distance in accordance with the response time, i.e., the transmission time, derived on the basis of a novel concept of Responsibility-Sensitive Safety(RSS). We improved the strategy by considering the uncertainty of response time and its dependence on vehicle distance and density. We performed theoretical analysis and numerical testing to illustrate the effectiveness of the improved robust RSS strategy. Our results enhance the practicability of building driverless highways with special lanes reserved for the exclusive use of LTE-V vehicles.
文摘针对国内地铁的车-地无线通信技术,将LTE(long term evolution,长期演进)与WLAN(wireless local area networks,无线局域网)技术进行对比,提出一套LTE组网方案。针对该方案,分析下行链路预算,对LTE基站的覆盖能力进行评估,认为引入LTE后,地铁中覆盖了多频段的无线通信系统;由于系统间频率相近,无线信号之间容易形成干扰。从干扰形成的角度分析干扰的成因,定量计算系统间的隔离度,从技术和工程建设角度给出减少干扰的措施。