We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details ...We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.展开更多
基金supported by the NSF of China(Nos.11875040 and 11631007)。
文摘We propose a systematic method to construct the Mel’nikov model of long–short wave interactions,which is a special case of the Kadomtsev–Petviashvili(KP)equation with self-consistent sources(KPSCS).We show details how the Cauchy matrix approach applies to Mel’nikov’s model which is derived as a complex reduction of the KPSCS.As a new result wefind that in the dispersion relation of a 1-soliton there is an arbitrary time-dependent function that has previously not reported in the literature about the Mel’nikov model.This function brings time variant velocity for the long wave and also governs the short-wave packet.The variety of interactions of waves resulting from the time-freedom in the dispersion relation is illustrated.
基金Supported by the Natural Science Foundation of China (10471059)the Natural Science Foundation of Anhui Province(070416225)+1 种基金the Natural Science Foundation of Anhui Education Bureau(KJ2007A003)the Faculty Fund of Anhui University