A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decompositi...A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.展开更多
Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ...Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.展开更多
Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties...The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.展开更多
Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the...Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.展开更多
The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimat...The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.展开更多
Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, loca...Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.展开更多
The significant challenge in human computer interaction is to create tangible interfaces that will make digital world accessible through augmented physical surfaces like walls and windows. In this paper, various acous...The significant challenge in human computer interaction is to create tangible interfaces that will make digital world accessible through augmented physical surfaces like walls and windows. In this paper, various acoustic source localization methods are proposed which have the potential to covert a physical object into a tracking sensitive interface. The Spatial Likelihood method has been used to locate acoustic source in real time by summing the spatial likelihood from all sensors. The source location is obtained from searching the maximum in the likelihood map. The data collected from the sensors is pre-processed and filtered for improvement of the accuracy of source localization. Finally a sensor fusion algorithm based on least squared error is presented to minimize the error while positioning the source. Promising results have been achieved experimentally for the application of acoustic tangible interfaces.展开更多
Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect posit...Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.展开更多
Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic visi...Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic vision. The paper presents the design of an anechoic chamber, sensor arrays and an analysis of how the data acquired from the sensors could be used for sound source localization and object detection. An anechoic chamber is designed to create a clean environment which isolates the experiment from external noises and reverberation echoes. An FPGA based data acquisition system is developed for a flexible acoustic sensor array platform. Using this sensor platform, we investigate direction of arrival estimation and source localization experiments with different geometries and with different numbers of sensors. We further present a discussion of parameters that influence the sensitivity and accuracy of the results of these experiments.展开更多
Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum...Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100μm, the calculations reveal that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 μm, this spectral gap is related to a forbidden band of the sound wave. In the experiment, we observe the predicted gap in the frequency spectrum in soda water. However, in tap water, no spectral gap is present because the bubbles are much smaller than 100μm.展开更多
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement...The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.展开更多
In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated a...In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.展开更多
Traditional technique such nanoindenter(NI) can't measure the local elastic modulus at nano-scale(lateral). Atomic force acoustic microscopy (AFAM) is a dynamic method, which can quantitatively determine indent...Traditional technique such nanoindenter(NI) can't measure the local elastic modulus at nano-scale(lateral). Atomic force acoustic microscopy (AFAM) is a dynamic method, which can quantitatively determine indentation modulus by measuring the contact resonance spectra for high order modes of the cantilever. But there are few reports on the effect of experimental factors, such length of cantilever, contact stiffness on measured value. For three different samples, including copper(Cu) film with 110 nm thickness, zinc(Zn) film of 90 nm thickness and glass slides, are prepared and tested, using referencing approach in which measurements are performed on the test and reference samples (it's elastic modulus is known), and their contact resonance spectra are measured used the AFAM system experimentally. According to the vibration theory, from the lowest two contact resonance frequencies, the tip-sample contact stiffness is calculated, and then the values for the elastic properties of test sample, such as the indentation modulus, are determined. Using AFAM system, the measured indentation modulus of copper nano-film, zinc nano-film and glass slides are 113.53 GPa, 87.92 GPa and 57.04 GPa, which are agreement with literature values Mcu--105-130 GPa, Mzn = 88.44 GPa and Molass = 50-90 GPa. Furthermore, the sensitivity of contact resonance frequency to contact stiffness is analyzed theoretically. The results show that for the cantilevers with the length 160 pm, 225 μm and 520 μm respectively, when contact stiffness increases from 400 N/m to 600 N/m, the increments of first contact resonance frequency are 126 kHz, 93 kHz and 0.6 kHz, which show that the sensitivity of the contact resonance frequency to the contact stiffness reduces with the length of cantilever increasing. The novel method presented can characterize elastic modulus of near surface for nano-film and bulk material, and local elasticity of near surface can be evaluated by optimizing the experimental parameters using the AFAM system.展开更多
Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.T...Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.The acoustic local effect in slender columnar structure with two layers of rings in air is investigated.Results prove that when the plane acoustic wave is incident into the model,complex interference and diffraction occur.And at different frequencies,multipolar acoustic local effect existes and cycle distribution phenomenon is observed.It is noteworthy that this phenomenon has very weak relatedness with the materials and acoustic parameters of the model.The research of this metamaterial design in this paper has definite reference significance in the acoustic communication and amplification of the acoustic signal detection.展开更多
The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the envir...The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.展开更多
Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,t...Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.展开更多
In this paper, a local orthogonal transformation is created to transform the Helmholtz waveguide with curved interface to the one with a flat interface within the two layer medium, and the Helmholtz equation u x...In this paper, a local orthogonal transformation is created to transform the Helmholtz waveguide with curved interface to the one with a flat interface within the two layer medium, and the Helmholtz equation u xx +u zz +κ 2(x,z)u=0 is transformed to V +αV +β V +γV=0 . Numerical results demonstrate that the transformation is more feasible. This transformation is particularly useful for the research on wave propagation in acoustic waveguide.展开更多
The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localizat...The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.展开更多
基金Supported by the National Natural Science Foundation of China (60872073)~~
文摘A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.
基金the National Natural Sciencefoundation of China (Grant No. 12174085)the FundamentalResearch Funds for the Central Universities (GrantNo. B220202018)+1 种基金the Basic Science (Natural Science) ResearchProject for the Universities of Jiangsu Province (GrantNo. 23KJD140002)Natural Science Foundation of Nantong(Grant No. JC2023081).
文摘Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)the Science and Technology Development Project of Shaanxi Province,China(Grant No.2010KJXX-02)+2 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-08-0455)the Foundation of State Key Lab of Acoustics,China(Grant No.SKLOA201101)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201226)
文摘The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
基金supported by the 10th Five-year Defense Pre-Research Fund of China (No.51405020305BQ0110).
文摘Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.
基金Sponsored by the Ministerial Level Advanced Research Foundation (9153C6753029532C667)
文摘The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.
基金supported by National Natural Science Foundation of China under Grants 61001067,61371093and 61172105Natural Science Foundation of Zhejiang Prov.China under Grants LY13D060001
文摘Underwater Acoustic Sensor Network(UASN) has attracted significant attention because of its great influence on ocean exploration and monitoring. On account of the unique characteristics of underwater environment, localization, as one of the fundamental tasks in UASNs, is a more challenging work than in terrestrial sensor networks. A survey of the ranging algorithms and the network architectures varied with different applications in UASNs is provided in this paper. Algorithms used to estimate the coordinates of the UASNs nodes are classified into two categories: rangebased and range-free. In addition, we analyze the architectures of UASNs based on different applications, and compare their performances from the aspects of communication cost, accuracy, coverage and so on. Open research issues which would affect the accuracy of localization are also discussed, including MAC protocols, sound speed and time synchronization.
文摘The significant challenge in human computer interaction is to create tangible interfaces that will make digital world accessible through augmented physical surfaces like walls and windows. In this paper, various acoustic source localization methods are proposed which have the potential to covert a physical object into a tracking sensitive interface. The Spatial Likelihood method has been used to locate acoustic source in real time by summing the spatial likelihood from all sensors. The source location is obtained from searching the maximum in the likelihood map. The data collected from the sensors is pre-processed and filtered for improvement of the accuracy of source localization. Finally a sensor fusion algorithm based on least squared error is presented to minimize the error while positioning the source. Promising results have been achieved experimentally for the application of acoustic tangible interfaces.
基金performed in the Project "The Research of Cluster Structure Based Underwater Acoustic Communication Network Topology Algorithm"supported by National Natural Science Foundation of China(No.61101164)
文摘Underwater sensor network can achieve the unmanned environmental monitoring and military monitoring missions.Underwater acoustic sensor node cannot rely on the GPS to position itself,and the traditional indirect positioning methods used in Ad Hoc networks are not fully applicable to the localization of underwater acoustic sensor networks.In this paper,we introduce an improved underwater acoustic network localization algorithm.The algorithm processes the raw data before localization calculation to enhance the tolerance of random noise.We reduce the redundancy of the calculation results by using a more accurate basic algorithm and an adjusted calculation strategy.The improved algorithm is more suitable for the underwater acoustic sensor network positioning.
文摘Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic vision. The paper presents the design of an anechoic chamber, sensor arrays and an analysis of how the data acquired from the sensors could be used for sound source localization and object detection. An anechoic chamber is designed to create a clean environment which isolates the experiment from external noises and reverberation echoes. An FPGA based data acquisition system is developed for a flexible acoustic sensor array platform. Using this sensor platform, we investigate direction of arrival estimation and source localization experiments with different geometries and with different numbers of sensors. We further present a discussion of parameters that influence the sensitivity and accuracy of the results of these experiments.
基金Supported by the National Natural Science Foundation of China under Grant No 11334005the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120002110031the Tsinghua Fudaoyuan Foreigh Visiting Support Project
文摘Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we theoretically predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100μm, the calculations reveal that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 μm, this spectral gap is related to a forbidden band of the sound wave. In the experiment, we observe the predicted gap in the frequency spectrum in soda water. However, in tap water, no spectral gap is present because the bubbles are much smaller than 100μm.
基金supported by the National Natural Science Foundation of China (Grant No. 10832011)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08)
文摘The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range.Moreover, in order to investigate impacts of locally resonant units,some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
基金Project supported by the National Natural Science Foundation of China(Grant No.50775005)
文摘In this paper the elastic properties of SiOx film are investigated quantitatively for local fixed point and qualitatively for overall area by atomic force acoustic microscopy (AFAM) in which the sample is vibrated at the ultrasonic frequency while the sample surface is touched and scanned with the tip contacting the sample respectively for fixed point and continuous measurements. The SiOx films on the silicon wafers are prepared by the plasma enhanced chemical vapour deposition (PECVD), The local contact stiffness of the tip-SiOx film is calculated from the contact resonance spectrum measured with the atomic force acoustic microscopy. Using the reference approach, indentation modulus of SiOx film for fixed point is obtained. The images of cantilever amplitude are also visualized and analysed when the SiOx surface is excited at a fixed frequency. The results show that the acoustic amplitude images can reflect the elastic properties of the sample.
基金supported by National Natural Science Foundation of China(Grant No. 50775005)General Program of Science and Technology Development Project of Beijing Municipal Education Commission(Grant No. KM201110015009)
文摘Traditional technique such nanoindenter(NI) can't measure the local elastic modulus at nano-scale(lateral). Atomic force acoustic microscopy (AFAM) is a dynamic method, which can quantitatively determine indentation modulus by measuring the contact resonance spectra for high order modes of the cantilever. But there are few reports on the effect of experimental factors, such length of cantilever, contact stiffness on measured value. For three different samples, including copper(Cu) film with 110 nm thickness, zinc(Zn) film of 90 nm thickness and glass slides, are prepared and tested, using referencing approach in which measurements are performed on the test and reference samples (it's elastic modulus is known), and their contact resonance spectra are measured used the AFAM system experimentally. According to the vibration theory, from the lowest two contact resonance frequencies, the tip-sample contact stiffness is calculated, and then the values for the elastic properties of test sample, such as the indentation modulus, are determined. Using AFAM system, the measured indentation modulus of copper nano-film, zinc nano-film and glass slides are 113.53 GPa, 87.92 GPa and 57.04 GPa, which are agreement with literature values Mcu--105-130 GPa, Mzn = 88.44 GPa and Molass = 50-90 GPa. Furthermore, the sensitivity of contact resonance frequency to contact stiffness is analyzed theoretically. The results show that for the cantilevers with the length 160 pm, 225 μm and 520 μm respectively, when contact stiffness increases from 400 N/m to 600 N/m, the increments of first contact resonance frequency are 126 kHz, 93 kHz and 0.6 kHz, which show that the sensitivity of the contact resonance frequency to the contact stiffness reduces with the length of cantilever increasing. The novel method presented can characterize elastic modulus of near surface for nano-film and bulk material, and local elasticity of near surface can be evaluated by optimizing the experimental parameters using the AFAM system.
基金National Natural Science Foundation of China(No.61671414)Natural Science Foundation for Young Scientists of Shanxi Province,China(No.201601D202035)
文摘Research of the acoustic local effect of metamaterial is widely used in the fields of environmental science,military industry and biomedicine.In this paper,the metamaterial is designed by annular columnar structures.The acoustic local effect in slender columnar structure with two layers of rings in air is investigated.Results prove that when the plane acoustic wave is incident into the model,complex interference and diffraction occur.And at different frequencies,multipolar acoustic local effect existes and cycle distribution phenomenon is observed.It is noteworthy that this phenomenon has very weak relatedness with the materials and acoustic parameters of the model.The research of this metamaterial design in this paper has definite reference significance in the acoustic communication and amplification of the acoustic signal detection.
文摘The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.
基金Project supported by the Sichuan Science and Technology Program(Grant No.2019YJ0530)Scientific Research Fund of Sichuan Provincial Education Department,China(Grant No.18ZA0401)the National Natural Science Foundation of China(Grant No.61205079).
文摘Distributed fiber sensors based on forward stimulated Brillouin scattering(F-SBS)have attracted special attention because of their capability to detect the acoustic impedance of liquid material outside fiber.However,the reported results were based on the extraction of a 1st-order local spectrum,causing the sensing distance to be restricted by pump depletion.Here,a novel post-processing technique was proposed for distributed acoustic impedance sensing by extracting the 2nd-order local spectrum,which is beneficial for improving the sensing signal-to-noise ratio(SNR)significantly,since its pulse energy penetrates into the fiber more deeply.As a proof-of-concept,distributed acoustic impedance sensing along~1630 m fiber under moderate spatial resolution of~20 m was demonstrated.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 980 1 6) and the Doctoral Fund ofthe Education Ministry of
文摘In this paper, a local orthogonal transformation is created to transform the Helmholtz waveguide with curved interface to the one with a flat interface within the two layer medium, and the Helmholtz equation u xx +u zz +κ 2(x,z)u=0 is transformed to V +αV +β V +γV=0 . Numerical results demonstrate that the transformation is more feasible. This transformation is particularly useful for the research on wave propagation in acoustic waveguide.
文摘The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.