期刊文献+
共找到247篇文章
< 1 2 13 >
每页显示 20 50 100
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:2
1
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 solid-state lithium metal batteries Composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization 被引量:2
2
作者 Birhanu Bayissa Gicha Lemma Teshome Tufa +2 位作者 Njemuwa Nwaji Xiaojun Hu Jaebeom Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期209-246,共38页
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ... Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs. 展开更多
关键词 All-solid-state lithium-sulfur batteries COMMERCIALIZATION Enhancement strategies solid-state electrolytes Sulfurbased cathodes
下载PDF
How Does Stacking Pressure Affect the Performance of Solid Electrolytes and All-Solid-State Lithium Metal Batteries? 被引量:2
3
作者 Junwu Sang Bin Tang +3 位作者 Yong Qiu Yongzheng Fang Kecheng Pan Zhen Zhou 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期93-98,共6页
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si... All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance. 展开更多
关键词 critical current density solid electrolyte solid-state lithium metal batteries stacking pressure
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries 被引量:1
4
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:1
5
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
下载PDF
SEI/dead Li-turning capacity loss for high-performance anode-free solid-state lithium batteries
6
作者 Qianwen Yin Tianyu Li +3 位作者 Hongzhang Zhang Guiming Zhong Xiaofei Yang Xianfeng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期145-152,共8页
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ... Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs. 展开更多
关键词 solid-state lithium batteries solid-state NMR Anode-free SEI Dead Li
下载PDF
Interface-reinforced solid-state electrochromic Li-ion batteries enabled by in-situ liquid-solid transitional plastic glues
7
作者 Ruidong Shi Kaiyue Liu +3 位作者 Mingxue Zuo Mengyang Jia Zhijie Bi Xiangxin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期96-104,共9页
The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues inc... The electrochromic Li-ion batteries(ELIBs) combine the functions of electrochromism and energy storage,realizing the display of energy-storage levels by visual signals. However, the accompanying interfacial issues including physical contact and(electro)chemical stability should be taken into account when the conventional liquid/gel electrolytes are replaced with solid-state counterparts. Herein, the in-situ liquid-solid transitional succinonitrile(SCN) plastic glues are constructed between electrodes and poly(ethylene oxide)(PEO) polymer electrolytes, enabling an interface-reinforced solid-state ELIB.Specifically, the liquid SCN precursor can adequately wet electrode/PEO interfaces at high temperature,while it returns back to solid state at room temperature, leading to seamless interfacial contact and smooth ionic transfer without changing the solid state of the device. Moreover, the SCN interlayer suppresses the direct contact of PEO with electrodes containing high-valence metal ions, evoking the improved interfacial stability by inhibiting the oxidation of PEO. Therefore, the resultant solid-state ELIB with configuration of LiMn_(2)O_(4)/SCN-PEO-SCN/WO_(3) delivers an initial discharge capacity of 111 m A h g^(-1) along with a capacity retention of 88.3% after 200 cycles at 30 ℃. Meanwhile, the electrochromic function is integrated into the device by distinguishing its energy-storage levels through distinct color changes. This work proposes a promising solid-state ELIB with greatly reinforced interfacial compatibility by introducing in-situ solidified plastic glues. 展开更多
关键词 Electrochromic Li-ion batteries Interfacial issues solid-state electrolytes Visualization
下载PDF
A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium–Sulfur Batteries
8
作者 Bingxin Qi Xinyue Hong +4 位作者 Ying Jiang Jing Shi Mingrui Zhang Wen Yan Chao Lai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期219-252,共34页
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in... The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries. 展开更多
关键词 solid-state lithium–sulfur batteries solid-state electrolytes Electrode/electrolyte interface Interfacial engineering Enhancing interfacial contact
下载PDF
Li-Ion Transport Mechanisms in Selenide-Based Solid-State Electrolytes in Lithium-Metal Batteries:A Study of Li_(8)SeN_(2),Li_(7)PSe_(6),and Li_(6)PSe_(5)X(X=Cl,Br,I)
9
作者 Wenshan Xiao Mingwei Wu +2 位作者 Huan Wang Yan Zhao Qiu He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期37-47,共11页
To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study pre... To achieve high-energy-density and safe lithium-metal batteries(LMBs),solid-state electrolytes(SSEs)that exhibit fast Li-ion conductivity and good stability against lithium metal are of great importance.This study presents a systematic exploration of selenide-based materials as potential SSE candidates.Initially,Li_(8)SeN_(2)and Li_(7)PSe_(6)were selected from 25 ternary selenides based on their ability to form stable interfaces with lithium metal.Subsequently,their favorable electronic insulation and mechanical properties were verified.Furthermore,extensive theoretical investigations were conducted to elucidate the fundamental mechanisms underlying Li-ion migration in Li_(8)SeN_(2),Li_(7)PSe_(6),and derived Li_(6)PSe_(5)X(X=Cl,Br,I).Notably,the highly favorable Li-ion conduction mechanism of vacancy diffusion was identified in Li6PSe5Cl and Li_(7)PSe_(6),which exhibited remarkably low activation energies of 0.21 and 0.23 eV,and conductivity values of 3.85×10^(-2)and 2.47×10^(-2)S cm^(-1)at 300 K,respectively.In contrast,Li-ion migration in Li_(8)SeN_(2)was found to occur via a substitution mechanism with a significant diffusion energy barrier,resulting in a high activation energy and low Li-ion conductivity of 0.54 eV and 3.6×10^(-6)S cm^(-1),respectively.Throughout this study,it was found that the ab initio molecular dynamics and nudged elastic band methods are complementary in revealing the Li-ion conduction mechanisms.Utilizing both methods proved to be efficient,as relying on only one of them would be insufficient.The discoveries made and methodology presented in this work lay a solid foundation and provide valuable insights for future research on SSEs for LMBs. 展开更多
关键词 Li-ion transport lithium argyrodites lithium-metal battery SELENIDES solid-state electrolytes
下载PDF
Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life
10
作者 Juhyoung Kim Woonghee Choi +1 位作者 Seong-Ju Hwang Dong Wook Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期4-12,共9页
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani... Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode. 展开更多
关键词 composite cathode electrochemical stability ionic conductive polymer solid-state battery sulfide solid electrolyte
下载PDF
A three-dimensional co-continuous network structure polymer electrolyte with efficient ion transport channels enabling ultralong-life all solid-state lithium metal batteries
11
作者 Meng Wang Hu Zhang +2 位作者 Yewen Li Ruiping Liu Huai Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期635-645,共11页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries. 展开更多
关键词 solid-state electrolyte Lithium-metal batteries Liquid crystalline polymer COPOLYMER 3D co-continuous structure Long cycle stability
下载PDF
Solid-state synthesis and ion transport characteristics of the β-KSbF_(4) for all-solid-state fluoride-ion batteries
12
作者 Jiali Liu Huahui Zhao +8 位作者 Jingcheng Xia Lingguang Yi Xiaoyi Chen Dongdu Li Shuhan Ni Xinyi Su Yixuan Chen Min Liu Xianyou Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期758-767,共10页
All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to th... All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs. 展开更多
关键词 solid-state electrolyte Carrier concentration Hopping frequency β-KSbF_(4) All-solid-state fluoride ion batteries
下载PDF
Reasonable design a high-entropy garnet-type solid electrolyte for all-solid-state lithium batteries
13
作者 Shiyu Yu Yandi Li +6 位作者 Jiaxin Luo Daming Chen Liang Yang Yaqing Wei De Li Yuanxun Li Yong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期414-423,共10页
Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prosp... Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries. 展开更多
关键词 Garnet solid electrolyte Dual-site substitution High-entropy all solid-state lithium batteries(ASSLBs)
下载PDF
Anion competition for Li^(+)solvated coordination environments in poly(1,3 dioxolane)electrolyte to enable high-voltage lithium metal solid-state batteries
14
作者 Qiujun Wang Yanqiang Ma +6 位作者 Xiaomeng Jia Di Zhang Zhaojin Li Huilan Sun Qujiang Sun Bo Wang Li-Zhen Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期633-641,共9页
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect... Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries. 展开更多
关键词 Li-metal batteries Poly(1 3-dioxolane) In situ polymerization solid-state polymer electrolytes Anion competition
下载PDF
A gel polymer electrolyte based on IL@NH_(2)-MIL-53(Al)for high-performance all-solid-state lithium metal batteries
15
作者 Sijia Wang Ye Liu +5 位作者 Liang He Yu Sun Qing Huang Shoudong Xu Xiangyun Qiu Tao Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期47-55,共9页
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co... Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries. 展开更多
关键词 Metal-organic frameworks(MOFs) All solid-state lithium batteries(ASSLBs) Ionic liquid NH_(2)-MIL-53(Al) solid-state electrolytes(SSEs)
下载PDF
A Room-Temperature Chloride-Conducting Metal-Organic Crystal[Al(DMSO)_(6)]Cl_(3) for Potential Solid-State Chloride-Shuttle Batteries
16
作者 Bing Wu Jan Luxa +5 位作者 Jiří Šturala Shuangying Wei Lukáš Děkanovský Abhilash Karuthedath Parameswaran Min Li Zdenek Sofer 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期107-113,共7页
The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The applicatio... The growing demand for substitutes of lithium chemistries in battery leads to a surge in budding novel anion-based electrochemical energy storage,where the chloride ion batteries(CIBs)take over the role.The application of CIBs is limited by the dissolution and side reaction of chloride-based electrode materials in a liquid electrolyte.On the flipside,its solid-state electrolytes are scarcely reported due to the challenge in realizing fast Cl^(-)conductivity.The present study reports[Al(DMSO)_(6)]Cl_(3),a solid-state metal-organic material,allows chloride ion transfer.The strong Al-Cl bonds in AlCl_(3)are broken down after coordinating of Al^(3+)by ligand DMSO,and Cl^(-)in the resulting compound is weakly bound to complexions[Al(DMSO)_(6)]^(3+),which may facilitate Cl^(-)migration.By partial replacement of Cl^(-)with PF_(6)^(-),the room-temperature ionic conductivity of as-prepared electrolyte is increased by one order of magnitude from 2.172×10^(-5)S cm^(-1)to 2.012×10^(-4)S cm^(-1).When they are assembled with Ag(anode)/Ag-AgCl(cathode)electrode system,reversible electrochemical redox reactions occur on both sides,demonstrating its potential for solid-state chloride ion batteries.The strategy by weakening the bonding interaction using organic ligands between Cl^(-)and central metallic ions may provide new ideas for developing solid chloride-ion conductors. 展开更多
关键词 [Al(DMSO)_(6)]Cl_(3) chloride-ion batteries ionic conductivity METAL-ORGANIC solid-state electrolytes
下载PDF
A gel polymer electrolyte with IL@UiO-66-NH_(2) as fillers for high-performance all-solid-state lithium metal batteries 被引量:4
17
作者 Tao Wei Qi Zhang +7 位作者 Sijia Wang Mengting Wang Ye Liu Cheng Sun Yanyan Zhou Qing Huang Xiangyun Qiu Fang Tian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1897-1905,共9页
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ... All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries. 展开更多
关键词 all solid-state lithium-ion batteries metal-organic frameworks gel polymer electrolytes ionic liquid solid electrolyte interphase
下载PDF
Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries 被引量:2
18
作者 Kyeong‑Seok Oh Ji Eun Lee +7 位作者 Yong‑Hyeok Lee Yi‑Su Jeong Imanuel Kristanto Hong‑Seok Min Sang‑Mo Kim Young Jun Hong Sang Kyu Kwak Sang‑Young Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期416-432,共17页
Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address th... Despite the enormous interest in inorganic/polymer composite solid-state electrolytes(CSEs)for solid-state batteries(SSBs),the underlying ion transport phenomena in CSEs have not yet been elucidated.Here,we address this issue by formulating a mechanistic understanding of bi-percolating ion channels formation and ion conduction across inorganic-polymer electrolyte interfaces in CSEs.A model CSE is composed of argyrodite-type Li_6PS_5Cl(LPSCl)and gel polymer electrolyte(GPE,including Li~+-glyme complex as an ion-conducting medium).The percolation threshold of the LPSCl phase in the CSE strongly depends on the elasticity of the GPE phase.Additionally,manipulating the solvation/desolvation behavior of the Li~+-glyme complex in the GPE facilitates ion conduction across the LPSCl-GPE interface.The resulting scalable CSE(area=8×6(cm×cm),thickness~40μm)can be assembled with a high-mass-loading LiNi_(0.7)Co_(0.15)Mn_(0.15)O_(2)cathode(areal-mass-loading=39 mg cm~(-2))and a graphite anode(negative(N)/positive(P)capacity ratio=1.1)in order to fabricate an SSB full cell with bi-cell configuration.Under this constrained cell condition,the SSB full cell exhibits high volumetric energy density(480 Wh L_(cell)~(-1))and stable cyclability at 25℃,far exceeding the values reported by previous CSE-based SSBs. 展开更多
关键词 solid-state batteries Composite solid-state electrolytes Ion transport phenomena Bi-percolating ion channels Interfacial resistance
下载PDF
COF-based single Li^(+)solid electrolyte accelerates the ion diffusionandrestrains dendritegrowthin quasi-solid-state organic batteries 被引量:3
19
作者 Genfu Zhao Zhiyuan Mei +5 位作者 Lingyan Duan Qi An Yongxin Yang Conghui Zhang Xiaoping Tan Hong Guo 《Carbon Energy》 SCIE CSCD 2023年第2期171-183,共13页
A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Amo... A solid-state electrolyte(SSE),which is a solid ionic conductor and electroninsulating material,is known to play a crucial role in adapting a lithium metal anode to a high-capacity cathode in a solid-state battery.Among the various SSEs,the single Li-ion conductor has advantages in terms of enhancing the ion conductivity,eliminating interfacial side reactions,and broadening the electrochemical window.Covalent organic frameworks(COFs)are optimal platforms for achieving single Li-ion conduction behavior because of wellordered one-dimensional channels and precise chemical modification features.Herein,we study in depth three types of Li-carboxylate COFs(denoted LiOOC-COFn,n=1,2,and 3)as single Li-ion conducting SSEs.Benefiting from well-ordered directional ion channels,the single Li-ion conductor LiOOC-COF3 shows an exceptional ion conductivity of 1.36×10^(-5) S cm^(-1) at room temperature and a high transference number of 0.91.Moreover,it shows excellent electrochemical performance with long-term cycling,high-capacity output,and no dendrites in the quasi-solid-state organic battery,with the organic small molecule cyclohexanehexone(C_(6)O_(6))as the cathode and the Li metal as the anode,and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte. 展开更多
关键词 covalent organic frameworks quasi-solid-state organic battery single Li-ion conductor solid-state electrolyte
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
20
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部