In this paper we present a comparative analysis of global frequency and local deformation data for a large concrete bridge. The asymptotic probability distributions of the central statistics are presented, and compare...In this paper we present a comparative analysis of global frequency and local deformation data for a large concrete bridge. The asymptotic probability distributions of the central statistics are presented, and compared with empirical bootstrap estimates. Bootstrapped distributions are calculated from reference data obtained during 1999–2000 and used to develop change-point alarm criteria for the structure, using reasonable sensitivity measures developed from FEM simulations and structural analysis. The implications of the frequency data are discussed in conjunction with the strain and displacement measurements in order to discern if the load carrying capacity of the bridge has been affected. The critical need for more advanced temperature compensation models for large structures continually in thermal disequilibrium is discussed.展开更多
基金the Illinois Department of TransportationAdditional assistance provided by Smart Structures Int
文摘In this paper we present a comparative analysis of global frequency and local deformation data for a large concrete bridge. The asymptotic probability distributions of the central statistics are presented, and compared with empirical bootstrap estimates. Bootstrapped distributions are calculated from reference data obtained during 1999–2000 and used to develop change-point alarm criteria for the structure, using reasonable sensitivity measures developed from FEM simulations and structural analysis. The implications of the frequency data are discussed in conjunction with the strain and displacement measurements in order to discern if the load carrying capacity of the bridge has been affected. The critical need for more advanced temperature compensation models for large structures continually in thermal disequilibrium is discussed.