During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ...During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.展开更多
Mountain road tunnels are prone to water leakage and lining corrosion under the complex geological conditions and corrosive envi-ronments,which will reduce the strength of the lining structure until it loses its load-...Mountain road tunnels are prone to water leakage and lining corrosion under the complex geological conditions and corrosive envi-ronments,which will reduce the strength of the lining structure until it loses its load-bearing capacity;eventually,the definitive lining will need to be replaced.In this paper,a highway tunnel in a mountainous area in Southwest China is taken as an example.Field investi-gation found that the tunnel was seriously corroded by sulfate,the strength of the definitive lining decreased,and large-scale cracks and spalling appeared on the surface,so the operator decided to replace the definitive lining by the method of interval replacement.Based on the data obtained from drilling and coring,a numerical model of long-distance replacement of the definitive lining of the damaged tunnel is established.First,the back analysis of the calculation parameters is carried out,and the modified calculation results are com-pared with the field monitoring results for verification.Then,the deformation trend of the tunnel and the development of the plastic zone during the process of long-distance replacement of the definitive lining are studied.Finally,the construction scheme is optimized.Numer-ical analysis results show that the replacement of the definitive lining of the tunnel mainly leads to the settlement of the arch crown and the uplift of the inverted arch.The deformation of the tunnel shows two rapid growth stages and two stable stages during the replace-ment process;after replacement,the deformation of the arch crown and the inverted arch is divided into two buffer zones and one stable zone.In the progress of the replacement of the definitive lining,the plastic zone does not change.Regarding the reinforcement measures,with the increase in the grouting range,the grouting efficiency decreases,and the effect of the temporary steel arch on controlling the overall deformation is not obvious.The length of the replacement of the single section should be determined according to the geological conditions of the replacement section and the monitoring data during construction.The research results can provide a reference for sim-ilar projects for the replacement of the definitive lining.展开更多
基金Beijing Postdoctoral Research Activity Funding Project,Grant/Award Number:2022-ZZ-097Beijing Municipal Natural Science Foundation,Grant/Award Number:8182048。
文摘During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata.
基金supported by the National Natural Science Foundation of China,China(Grant Nos.41972266,52104076,and 12102230)the China Postdoctoral Science Foundation,China(Grant No.2022M711862).
文摘Mountain road tunnels are prone to water leakage and lining corrosion under the complex geological conditions and corrosive envi-ronments,which will reduce the strength of the lining structure until it loses its load-bearing capacity;eventually,the definitive lining will need to be replaced.In this paper,a highway tunnel in a mountainous area in Southwest China is taken as an example.Field investi-gation found that the tunnel was seriously corroded by sulfate,the strength of the definitive lining decreased,and large-scale cracks and spalling appeared on the surface,so the operator decided to replace the definitive lining by the method of interval replacement.Based on the data obtained from drilling and coring,a numerical model of long-distance replacement of the definitive lining of the damaged tunnel is established.First,the back analysis of the calculation parameters is carried out,and the modified calculation results are com-pared with the field monitoring results for verification.Then,the deformation trend of the tunnel and the development of the plastic zone during the process of long-distance replacement of the definitive lining are studied.Finally,the construction scheme is optimized.Numer-ical analysis results show that the replacement of the definitive lining of the tunnel mainly leads to the settlement of the arch crown and the uplift of the inverted arch.The deformation of the tunnel shows two rapid growth stages and two stable stages during the replace-ment process;after replacement,the deformation of the arch crown and the inverted arch is divided into two buffer zones and one stable zone.In the progress of the replacement of the definitive lining,the plastic zone does not change.Regarding the reinforcement measures,with the increase in the grouting range,the grouting efficiency decreases,and the effect of the temporary steel arch on controlling the overall deformation is not obvious.The length of the replacement of the single section should be determined according to the geological conditions of the replacement section and the monitoring data during construction.The research results can provide a reference for sim-ilar projects for the replacement of the definitive lining.