The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development o...The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.展开更多
An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introd...An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introduced firstly,and the Cramer-Rao lower bound(CRLB)is proposed so as to evaluate the performance of the SNR estimation algorithm.For frequency-selective fading channel part,estimation and compensation are made to improve the robustness of the system on the basis of the LMS algorithm.Furthermore,real-time update iteration algorithm in the frequency domain is investigated to realize synchronous receiving and estimation.For verification,simulations and actual data tests were made,and the results show that the algorithm possesses great robustness,efficiency and accuracy inrealization of SNR estimation,signal detection and frequency impulse compensation for the channel.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filt...A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .展开更多
Adaptive traffic light scheduling based on realtime traffic information processing has proven effective for urban traffic congestion management. However, fine-grained information regarding individual vehicles is diffi...Adaptive traffic light scheduling based on realtime traffic information processing has proven effective for urban traffic congestion management. However, fine-grained information regarding individual vehicles is difficult to acquire through traditional data collection techniques and its accuracy cannot be guaranteed because of congestion and harsh environments. In this study, we first build a pipeline model based on vehicle-to-infrastructure communication, which is a salient technique in vehicular adhoc networks. This model enables the acquisition of fine-grained and accurate traffic information in real time via message exchange between vehicles and roadside units. We then propose an intelligent traffic light scheduling method (ITLM) based on a “demand assignment” principle by considering the types and turning intentions of vehicles. In the context of this principle, a signal phase with more vehicles will be assigned a longer green time. Furthermore, a green-way traffic light scheduling method (GTLM) is investigated for special vehicles (e.g., ambulances and fire engines) in emergency scenarios. Signal states will be adjusted or maintained by the traffic light control system to keep special vehicles moving along smoothly. Comparative experiments demonstrate that the ITLM reduces average wait time by 34%-78% and average stop frequency by 12%-34% in the context of traffic management. The GTLM reduces travel time by 22%^44% and 30%-55% under two types of traffic conditions and achieves optimal performance in congested scenarios.展开更多
Communication optimization is very important for imporoving performance of parallel programs A communication optimization method called HVMP(Half Vector Message Ripelining) is presented. In comparison with the widelyu...Communication optimization is very important for imporoving performance of parallel programs A communication optimization method called HVMP(Half Vector Message Ripelining) is presented. In comparison with the widelyused vector message pipelining, HVMP can get better tradeoff between reducing and hiding communication overhead,and eliminate the communication barrier of barrier synchronization problems[1]. For parallel Systems with low bandwidth such as cluster of workstations and barrier synchronization problems with large amount of communication, HVMPmethod can get good performance.展开更多
On June 25^th and 26^th,the Sub-forum of the 2019 High-level Forum on Hot Issues in International Energy,focused on“Oil and Gas Pipeline Safety along the‘Belt and Road’”,was successfully held in Ruili,Yunnan.Joint...On June 25^th and 26^th,the Sub-forum of the 2019 High-level Forum on Hot Issues in International Energy,focused on“Oil and Gas Pipeline Safety along the‘Belt and Road’”,was successfully held in Ruili,Yunnan.Jointly sponsored by the Petroleum Industry Press,CNPC Southwest Pipeline Company and Southwest Petroleum University,it served as a sub-forum of the 2019 High-level Forum on Hot Issues in International Energy,which aims to provide a platform for energy experts to communicate with each other.Zhang Weiguo,Party Committee Secretary,Executive Director and General Manager of the Petroleum Industry Press,Zou Yongsheng,Executive Deputy General Manager of the CNPC Southwest Pipeline Company,and Sun Yiping,Party Committee Secretary of Southwest Petroleum University,gave opening speeches respectively.展开更多
We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division mul...We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.展开更多
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased s...The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.展开更多
Hyperentanglement has attracted considerable attention recently because of its high-capacity for long- distance quantum communication. In this study, we present a hyperentanglement concentration pro- tocol (hyper-ECP...Hyperentanglement has attracted considerable attention recently because of its high-capacity for long- distance quantum communication. In this study, we present a hyperentanglement concentration pro- tocol (hyper-ECP) for nonlocal three-photon systems in the polarization, spatial-mode, and time- bin partially hyperentangled Greenberger-Horne-Zeilinger (GHZ) states using the Schmidt projection method. In our hyper-ECP, the three distant parties must perform the parity-check measurements on the polarization, spatial-mode, and time-bin degrees of freedom, respectively, using linear optical ele- ments and Pockels cells, and only two identical nonlocal photon systems are required. This hyper-ECP can be directly extended to the N-photon hyperentangled GHZ states, and the success probability of this general hyper-ECP for a nonlocal N-photon system is the optimal one, regardless of the photon number N.展开更多
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
文摘The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.
文摘An estimation and compensation algorithm for underwater acoustic pipeline channel is investigated.A joint time-frequency adaptive signal-to-noise ratio(SNR)estimation based on the maximum likelihood method is introduced firstly,and the Cramer-Rao lower bound(CRLB)is proposed so as to evaluate the performance of the SNR estimation algorithm.For frequency-selective fading channel part,estimation and compensation are made to improve the robustness of the system on the basis of the LMS algorithm.Furthermore,real-time update iteration algorithm in the frequency domain is investigated to realize synchronous receiving and estimation.For verification,simulations and actual data tests were made,and the results show that the algorithm possesses great robustness,efficiency and accuracy inrealization of SNR estimation,signal detection and frequency impulse compensation for the channel.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61472287, 61572370)the Science and Technology Support Program of Hubei Province (2015CFA068).
文摘Adaptive traffic light scheduling based on realtime traffic information processing has proven effective for urban traffic congestion management. However, fine-grained information regarding individual vehicles is difficult to acquire through traditional data collection techniques and its accuracy cannot be guaranteed because of congestion and harsh environments. In this study, we first build a pipeline model based on vehicle-to-infrastructure communication, which is a salient technique in vehicular adhoc networks. This model enables the acquisition of fine-grained and accurate traffic information in real time via message exchange between vehicles and roadside units. We then propose an intelligent traffic light scheduling method (ITLM) based on a “demand assignment” principle by considering the types and turning intentions of vehicles. In the context of this principle, a signal phase with more vehicles will be assigned a longer green time. Furthermore, a green-way traffic light scheduling method (GTLM) is investigated for special vehicles (e.g., ambulances and fire engines) in emergency scenarios. Signal states will be adjusted or maintained by the traffic light control system to keep special vehicles moving along smoothly. Comparative experiments demonstrate that the ITLM reduces average wait time by 34%-78% and average stop frequency by 12%-34% in the context of traffic management. The GTLM reduces travel time by 22%^44% and 30%-55% under two types of traffic conditions and achieves optimal performance in congested scenarios.
文摘Communication optimization is very important for imporoving performance of parallel programs A communication optimization method called HVMP(Half Vector Message Ripelining) is presented. In comparison with the widelyused vector message pipelining, HVMP can get better tradeoff between reducing and hiding communication overhead,and eliminate the communication barrier of barrier synchronization problems[1]. For parallel Systems with low bandwidth such as cluster of workstations and barrier synchronization problems with large amount of communication, HVMPmethod can get good performance.
文摘On June 25^th and 26^th,the Sub-forum of the 2019 High-level Forum on Hot Issues in International Energy,focused on“Oil and Gas Pipeline Safety along the‘Belt and Road’”,was successfully held in Ruili,Yunnan.Jointly sponsored by the Petroleum Industry Press,CNPC Southwest Pipeline Company and Southwest Petroleum University,it served as a sub-forum of the 2019 High-level Forum on Hot Issues in International Energy,which aims to provide a platform for energy experts to communicate with each other.Zhang Weiguo,Party Committee Secretary,Executive Director and General Manager of the Petroleum Industry Press,Zou Yongsheng,Executive Deputy General Manager of the CNPC Southwest Pipeline Company,and Sun Yiping,Party Committee Secretary of Southwest Petroleum University,gave opening speeches respectively.
基金supported by the National Key R&D Program of China(No.2018YFB1800905)the National Natural Science Foundation of China(Nos.61935005,61720106015,61835002,and 62127802)。
文摘We experimentally transmit eight wavelength-division-multiplexing(WDM)channels,16 quadratic-amplitude-modulation(QAM)signals at 32-GBaud,over 1000 km few mode fiber(FMF).In this experiment,we use WDM,mode division multiplexing,and polarization multiplexing for signal transmission.Through the multiple-input-multiple-output(MIMO)equalization algorithms,we achieve the total line transmission rate of 4.096 Tbit/s.The results prove that the bit error rates(BERs)for the16QAM signals after 1000 km FMF transmission are below the soft-decision forward-error-correction(SD-FEC)threshold of2.4×10^(-2),and the net rate reaches 3.413 Tbit/s.Our proposed system provides a reference for the future development of high-capacity communication.
基金supported in part by the National Science Foundation (grants IOS-0752997 and IOS-0918433 to WJL grants IOS#0749731, IOS#051909 to PK)+8 种基金the Department of Energy, Division of Energy Biosciences (grantsDE-FG02-94ER20134 to WJL)the US Department of Agriculture, Agricultural Research Service (under Agreement number58-6250-0-008 to MAG)the Spanish Ministry of Science andInnovation (MICINN) (grants AGL2007-61948 and AGL2009-09018 to AFLM)the Ministry of Education, Science, Sportsand Culture of Japan (grant 19060009 to HF)the JapanSociety for the Promotion of Science (JSPS grant 23227001to HF)the NC-CARP project (to HF)the NationalKey Basic Research Program of China (grant 2012CB114500to XH)the National Natural Science Foundation of China (grant31070156 to XH)the NSFC-JSPS cooperation project(grant 31011140070 to HF and XH)
文摘The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
基金This work was supported by the National Natural Science Foundation of China under Grants Nos. 11604226, 11674033, and 11474026, and the Science and Technology Program Foundation of the Beijing Municipal Commission of Education of China under Grant No. KM201710028005.
文摘Hyperentanglement has attracted considerable attention recently because of its high-capacity for long- distance quantum communication. In this study, we present a hyperentanglement concentration pro- tocol (hyper-ECP) for nonlocal three-photon systems in the polarization, spatial-mode, and time- bin partially hyperentangled Greenberger-Horne-Zeilinger (GHZ) states using the Schmidt projection method. In our hyper-ECP, the three distant parties must perform the parity-check measurements on the polarization, spatial-mode, and time-bin degrees of freedom, respectively, using linear optical ele- ments and Pockels cells, and only two identical nonlocal photon systems are required. This hyper-ECP can be directly extended to the N-photon hyperentangled GHZ states, and the success probability of this general hyper-ECP for a nonlocal N-photon system is the optimal one, regardless of the photon number N.