Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechani...Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable m RNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n...The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.展开更多
Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the...Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.展开更多
We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the de...We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.展开更多
Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observationa...Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observational data with high speed and high accuracy.With the rapid advancement of the FRB research process,FRB searching has changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with specialized equipments.Therefore,establishing a highly efficient and high quality FRB search pipeline is the primary task in FRB research.Deep learning techniques provide new ideas for FRB search processing.We have detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope(NSRT-26m)using the constructed deep learning based search pipeline named dispersed dynamic spectra search(DDSS).Afterwards,we further retrained the deep learning model and applied the DDSS framework to S-band observations.In this paper,we present the FRB observation system and search pipeline using the S-band receiver.We carried out search experiments,and successfully detected the radio bursts from the magnetar SGR J1935+2145and FRB 20220912A.The experimental results show that the search pipeline can complete the search efficiently and output the search results with high accuracy.展开更多
The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span va...The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.展开更多
With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channe...With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.展开更多
The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To ...The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.展开更多
Introduction: In hyperthyroidism, selective irradiation of the thyroid gland with radioactive iodine is a radical treatment and an alternative to surgery. The aim of this review is to assess the medium-term efficacy o...Introduction: In hyperthyroidism, selective irradiation of the thyroid gland with radioactive iodine is a radical treatment and an alternative to surgery. The aim of this review is to assess the medium-term efficacy of outpatient treatment of hyperthyroidism with iodine-131 in Africa. Methods: We identified the studies carried out in Africa on outpatient radiation therapy between 2016 and 2020. For each article included, we noted the country concerned and the year of publication, the numbers studied, the socio-demographic characteristics of the patients, the indications for radio iodine therapy, the dose administered, the results of the hormonal dosage 6 months after radiation. Results: 13 retrospective studies were included to constitute a total population of 925 patients. The average age was 40.77 years, the sex ratio of 1/5.4 with a clear female predominance. The 3 main etiologies of hyperthyroidism justifying outpatient radio iodine therapy were Graves’ disease (55.89%), toxic multinodular goiter (22.70%) and toxic adenoma (21.40%). The average dose of iodine 131 administered per course is 13.7 mCi. No short-and medium-term complications were reported. The radio iodine therapy was effective in 86.08% (n = 796) of the patients with extremes of 72% and 100%. Conclusion: Radio iodine therapy is effective in Africa. It is simple, inexpensive on an outpatient basis and well tolerated. The introduction of outpatient radio iodine therapy could improve the management of patients with hyperthyroidism in Burkina Faso.展开更多
Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurri...Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurring antioxidants that come from plants, as synthetic antioxidants are toxic, carcinogenic and problematic for the environment. Lycopene is one of the carotenoids, a pigment that dissolves in fat and has antioxidant properties. Materials and Methods: The antioxidant and free radical scavenging activity were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The impact of lycopene on bacteria (E. coli) susceptibility to γ-radiation was examined by radio sensitivity assay. The study also examined the induction of strand breaks in plasmid pUC19 DNA and how lycopene extract protected the DNA from γ-radiation in vitro. Results: At varying concentrations, lycopene demonstrated its ability to scavenge free radicals such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH). IC<sub>50</sub> for lycopene was determined at 112 μg/mL which was almost partial to IC<sub>50</sub> of standard antioxidant L-ascorbic acid. The D<sub>10</sub> value 180 Gy of E. coli was found to be >2-fold higher in the extract-containing lycopene sample than in the extract-free controls. The lycopene extracts inhibited the radiation-induced deterioration of the plasmid pUC19 DNA. At an IC<sub>50</sub> concentration, lycopene provided the highest level of protection. Conclusion: Lycopene functions as an efficient free radical scavenger and possible natural antioxidant source. For cancer patients and others who frequently expose themselves to radiation, lycopene may be a useful plant-based pharmaceutical product for treating a variety of diseases caused by free radicals.展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit mission...Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.展开更多
A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in fr...A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.展开更多
Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily st...Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily storable and transportable,deployable on a large scale,durable,and capable of good electrical performance.A membrane antenna is an excellent candidate to meet these criteria.We study the design of a low-frequency membrane antenna for a lunar-based low-frequency(<30 MHz)radio telescope constructed from polyimide film widely used in aerospace applications,owing to its excellent dielectric properties and high stability as a substrate material.We first design and optimize an antenna in free space through dipole deformation and coupling principles,then simulate an antenna on the lunar surface with a simple lunar soil model,yielding an efficiency greater than 90%in the range of 12-19 MHz and greater than 10%in the range of 5-35 MHz.The antenna inherits the omni-directional radiation pattern of a simple dipole antenna in the 5-30 MHz frequency band,giving a large field of view and allowing detection of the 21 cm global signal when used alone.A demonstration prototype is constructed,and its measured electrical property is found to be consistent with simulated results using|S11|measurements.This membrane antenna can potentially fulfill the requirements of a lunar low-frequency array,establishing a solid technical foundation for future large-scale arrays for exploring the cosmic dark ages.展开更多
The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary...The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.展开更多
The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark ...The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.展开更多
The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This re...The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.展开更多
This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
基金supported by the 111 Project(Grant No.B17043)the 2115 Talent Development Program of China Agricultural University。
文摘Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable m RNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation 2022M720419 to provide fund for conducting experiments。
文摘The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs.
文摘Mainstream media play a crucial role in constructing the cultural memory of a city.This study used 319 short videos released by“Hi Chengdu,”a new media product of Chengdu Radio and Television,as samples.Based on the grounded theory,a research framework encompassing“content,technology,and discourse”was established to explore the paths through which mainstream media construct the cultural memory.Regarding content,this paper emphasized temporal and spatial contexts and urban spaces,delving deep into the themes of the cultural memory and vehicles for it.In terms of technology,this paper discussed the practice of leveraging audio/visual-mode discourse to stitch together the impressions of a city and evoke emotional resonance to create a“flow”of memory.As for discourse,this paper looked at the performance of a communication ritual to frame concepts and shape urban identity.It is essential to break free from conventional thinking and leverage local culture as the primary driving force to further boost a city’s productivity,in order to excel in cultural communication.
基金supported by the National SKA Program of China(2022SKA0120101,2022SKA0130100,2022SKA 0130104)the National Natural Science Foundation of China(NSFC,grant No.12103013)+5 种基金the Foundation of Science and Technology of Guizhou Province(Nos.(2021)023)the Foundation of Guizhou Provincial Education Department(Nos.KY(2021)303,KY(2020)003,KY(2023)059)supported by the National Natural Science Foundation of China(NSFC,grant Nos.12103076 and 12233005)the National Key R&D Program of China(2020YFE0202100)the Shanghai Sailing Program(21YF1455300)the China Postdoctoral Science Foundation(2021M693267)。
文摘We present an independent catalog(FRIIRGcat)of 45,241 Fanaroff–Riley TypeⅡ(FR-Ⅱ)radio galaxies compiled from the Very Large Array Faint Images of the Radio Sky at Twenty-centimeters(FIRST)survey and employed the deep learning method.Among them,optical and/or infrared counterparts are identified for 41,425 FR-Ⅱs.This catalog spans luminosities 2.63×10^(22)≤L_(rad)≤6.76×10^(29)W Hz^(-1)and redshifts up to z=5.01.The spectroscopic classification indicates that there are 1431 low-excitation radio galaxies and 260 high-excitation radio galaxies.Among the spectroscopically identified sources,black hole masses are estimated for 4837 FR-Is,which are in 10^(7.5)■M_(BH)■10^(9.5)M_(⊙).Interestingly,this catalog reveals a couple of giant radio galaxies(GRGs),which are already in the existing GRG catalog,confirming the efficiency of this FR-I catalog.Furthermore,284new GRGs are unveiled in this new FR-I sample;they have the largest projected sizes ranging from 701 to1209 kpc and are located at redshifts 0.31<z<2.42.Finally,we explore the distribution of the jet position angle and it shows that the faint Images of the FIRST images are significantly affected by the systematic effect(the observing beams).The method presented in this work is expected to be applicable to the radio sky surveys that are currently being conducted because they have finely refined telescope arrays.On the other hand,we are expecting that further new methods will be dedicated to solving this problem.
基金supported by the Chinese Academy of Sciences(CAS)“Light of West China”Program(No.2022-XBQNXZ-015)the National Natural Science Foundation of China(NSFC,grant No.11903071)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance(MOF)of China and administered by the Chinese Academy of Sciences(CAS)。
文摘Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observational data with high speed and high accuracy.With the rapid advancement of the FRB research process,FRB searching has changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with specialized equipments.Therefore,establishing a highly efficient and high quality FRB search pipeline is the primary task in FRB research.Deep learning techniques provide new ideas for FRB search processing.We have detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope(NSRT-26m)using the constructed deep learning based search pipeline named dispersed dynamic spectra search(DDSS).Afterwards,we further retrained the deep learning model and applied the DDSS framework to S-band observations.In this paper,we present the FRB observation system and search pipeline using the S-band receiver.We carried out search experiments,and successfully detected the radio bursts from the magnetar SGR J1935+2145and FRB 20220912A.The experimental results show that the search pipeline can complete the search efficiently and output the search results with high accuracy.
文摘The Internet of Things(IoT)has witnessed a significant surge in adoption,particularly through the utilization of Wireless Sensor Networks(WSNs),which comprise small internet-connected devices.These deployments span various environments and offer a multitude of benefits.However,the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities.In response to this,the Internet Engineering Task Force(IETF)has developed the IPv6 Routing Protocol for Low-power and Lossy Networks(RPL)to address the unique requirements of such networks.Recognizing the critical role of RPL in maintaining high performance,this paper proposes a novel approach to optimizing power consumption.Specifically,it introduces a developed sensor motes topology integrated with a Radio Duty Cycling(RDC)mechanism aimed at minimizing power usage.Through rigorous analysis,the paper evaluates the power efficiency of this approach through several simulations conducted across different network topologies,including random,linear,tree,and elliptical topologies.Additionally,three distinct RDC mechanisms—CXMAC,ContikiMAC,and NullRDC—are investigated to assess their impact on power consumption.The findings of the study,based on a comprehensive and deep analysis of the simulated results,highlight the efficiency of ContikiMAC in power conservation.This research contributes valuable insights into enhancing the energy efficiency of RPL-based IoT networks,ultimately facilitating their widespread deployment and usability in diverse environments.
基金This work was supported by the National Natural Science Foundation of China(62271192)Henan Provincial Scientists Studio(GZS2022015),Central Plains Talents Plan(ZYYCYU202012173)+8 种基金National Key R&D Program of China(2020YFB2008400)the Program of CEMEE(2022Z00202B)LAGEO of Chinese Academy of Sciences(LAGEO-2019-2)Program for Science&Technology Innovation Talents in the University of Henan Province(20HASTIT022)Natural Science Foundation of Henan under Grant 202300410126Program for Innovative Research Team in University of Henan Province(21IRTSTHN015)Equipment Pre-Research Joint Research Program of Ministry of Education(8091B032129)Training Program for Young Scholar of Henan Province forColleges andUniversities(2020GGJS172)Programfor Science&Technology Innovation Talents in Universities of Henan Province under Grand(22HASTIT020)and Henan Province Science Fund for Distinguished Young Scholars(222300420006).
文摘With the development of information technology,more and more devices are connected to the Internet through wireless communication to complete data interconnection.Due to the broadcast characteristics ofwireless channels,wireless networks have suffered more and more malicious attacks.Physical layer security has received extensive attention from industry and academia.MIMO is considered to be one of the most important technologies related to physical layer security.Through beamforming technology,messages can be transmitted to legitimate users in an offset direction that is as orthogonal as possible to the interference channel to ensure the reception SINR by legitimate users.Combining the symbiotic radio(SR)technology,this paper considers a symbiotic radio antijamming MIMO system equipped with a multi-antenna system at the main base station.In order to avoid the interference signal and improve the SINR of the signal received by the user.The base station is equipped with a uniform rectangular antenna array,and using Null Space Projection(NSP)Beamforming,Intelligent Reflecting Surface(IRS)can assist in changing the beam’s angle.The simulation results show that NSP Beamforming could make a better use of the null space of interference,which can effectively improve the received SINR of users under directional interference,and improve the utilization efficiency of signal energy.
基金supported by the Science and Technology Project of State Grid Corporation of China (No.5200202155587A-0-5-GC)。
文摘The corona discharge from transmission lines in high-altitude areas is more severe than at lower altitudes. The radio interference caused thereby is a key factor to be considered when designing transmission lines. To study the influence of altitude on negative corona characteristics, an experimental platform comprising a movable small corona cage was established: experiments were conducted at four altitudes in the range of 1120-4320 m, and data on the corona current pulse and radio interference level of 0.8-mm diameter fine copper wire under different negative voltages were collected. The experimental results show that the average amplitude, repetition frequency and average current of the corona current pulse increase with increasing altitude. The dispersion of pulse amplitude increases with increase in altitude, while the randomness of the pulse interval decreases continuously. Taking the average current as an intermediate variable,the relationship between radio interference level and altitude is obtained. The result of this research has some significance for understanding the corona discharge characteristics of ultra-highvoltage lines.
文摘Introduction: In hyperthyroidism, selective irradiation of the thyroid gland with radioactive iodine is a radical treatment and an alternative to surgery. The aim of this review is to assess the medium-term efficacy of outpatient treatment of hyperthyroidism with iodine-131 in Africa. Methods: We identified the studies carried out in Africa on outpatient radiation therapy between 2016 and 2020. For each article included, we noted the country concerned and the year of publication, the numbers studied, the socio-demographic characteristics of the patients, the indications for radio iodine therapy, the dose administered, the results of the hormonal dosage 6 months after radiation. Results: 13 retrospective studies were included to constitute a total population of 925 patients. The average age was 40.77 years, the sex ratio of 1/5.4 with a clear female predominance. The 3 main etiologies of hyperthyroidism justifying outpatient radio iodine therapy were Graves’ disease (55.89%), toxic multinodular goiter (22.70%) and toxic adenoma (21.40%). The average dose of iodine 131 administered per course is 13.7 mCi. No short-and medium-term complications were reported. The radio iodine therapy was effective in 86.08% (n = 796) of the patients with extremes of 72% and 100%. Conclusion: Radio iodine therapy is effective in Africa. It is simple, inexpensive on an outpatient basis and well tolerated. The introduction of outpatient radio iodine therapy could improve the management of patients with hyperthyroidism in Burkina Faso.
文摘Background: The accumulation of free radicals is linked to a number of diseases. Free radicals can be scavenged by antioxidants and reduce their harmful effects. It is therefore essential to look for naturally occurring antioxidants that come from plants, as synthetic antioxidants are toxic, carcinogenic and problematic for the environment. Lycopene is one of the carotenoids, a pigment that dissolves in fat and has antioxidant properties. Materials and Methods: The antioxidant and free radical scavenging activity were assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The impact of lycopene on bacteria (E. coli) susceptibility to γ-radiation was examined by radio sensitivity assay. The study also examined the induction of strand breaks in plasmid pUC19 DNA and how lycopene extract protected the DNA from γ-radiation in vitro. Results: At varying concentrations, lycopene demonstrated its ability to scavenge free radicals such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH). IC<sub>50</sub> for lycopene was determined at 112 μg/mL which was almost partial to IC<sub>50</sub> of standard antioxidant L-ascorbic acid. The D<sub>10</sub> value 180 Gy of E. coli was found to be >2-fold higher in the extract-containing lycopene sample than in the extract-free controls. The lycopene extracts inhibited the radiation-induced deterioration of the plasmid pUC19 DNA. At an IC<sub>50</sub> concentration, lycopene provided the highest level of protection. Conclusion: Lycopene functions as an efficient free radical scavenger and possible natural antioxidant source. For cancer patients and others who frequently expose themselves to radiation, lycopene may be a useful plant-based pharmaceutical product for treating a variety of diseases caused by free radicals.
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12005031 and 12275041)the Natural Science Fund from the Interdisciplinary Project of Dalian University(Grant No.DLUXK-2023-QN-001)。
文摘Due to a series of challenges such as low-orbit maintenance of satellites, the air-breathing electric propulsion has got widespread attention. Commonly, the radio frequency ion thruster is favored by low-orbit missions due to its high specific impulse and efficiency. In this paper, the power transfer efficiency of the radio frequency ion thruster with different gas compositions is studied experimentally, which is obtained by measuring the radio frequency power and current of the antenna coil with and without discharge operation. The results show that increasing the turns of antenna coils can effectively improve the radio frequency power transfer efficiency, which is due to the improvement of Q factor. In pure N_2 discharge,with the increase of radio frequency power, the radio frequency power transfer efficiency first rises rapidly and then exhibits a less steep increasing trend. The radio frequency power transfer efficiency increases with the increase of gas pressure at relatively high power, while declines rapidly at relatively low power. In N_(2)/O_(2) discharge, increasing the N_(2) content at high power can improve the radio frequency power transfer efficiency, but the opposite was observed at low power. In order to give a better understanding of these trends, an analytic solution in limit cases is utilized, and a Langmuir probe was employed to measure the electron density. It is found that the evolution of radio frequency power transfer efficiency can be well explained by the variation of plasma resistance, which is related to the electron density and the effective electron collision frequency.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975264)。
文摘A magnetic field produced by a current flowing through the plasma grid(PG) is one of the solutions to reduce the collisional loss of negative ions in a negative ion source, which reduces the electron temperature in front of the PG. However, the magnetic field diffused into the driver has some influence on the plasma outflowing. In order to investigate the effect of changing this magnetic field on the outflowing of plasma from the driver, a circular ring(absorber) of high permeability iron has been introduced at the driver exit, which can reduce the magnetic field around it and improve plasma outflowing. With the application of the absorber, the electron density is increased by about 35%, and the extraction current measured from the extraction grid is increased from 1.02 A to 1.29 A. The results of the extraction experiment with cesium injection show that both the extraction grid(EG) current and H-current are increased when the absorber is introduced.
基金We acknowledge the support of the National SKA program of China(2022SKA0110100,2022SKA0110101)the Natural Science Foundation of China(12273070,12203061,1236114814,12303004).
文摘Detecting primordial fluctuations from the cosmic dark ages requires extremely large low-frequency radio telescope arrays deployed on the far side of the Moon.The antenna of such an array must be lightweight,easily storable and transportable,deployable on a large scale,durable,and capable of good electrical performance.A membrane antenna is an excellent candidate to meet these criteria.We study the design of a low-frequency membrane antenna for a lunar-based low-frequency(<30 MHz)radio telescope constructed from polyimide film widely used in aerospace applications,owing to its excellent dielectric properties and high stability as a substrate material.We first design and optimize an antenna in free space through dipole deformation and coupling principles,then simulate an antenna on the lunar surface with a simple lunar soil model,yielding an efficiency greater than 90%in the range of 12-19 MHz and greater than 10%in the range of 5-35 MHz.The antenna inherits the omni-directional radiation pattern of a simple dipole antenna in the 5-30 MHz frequency band,giving a large field of view and allowing detection of the 21 cm global signal when used alone.A demonstration prototype is constructed,and its measured electrical property is found to be consistent with simulated results using|S11|measurements.This membrane antenna can potentially fulfill the requirements of a lunar low-frequency array,establishing a solid technical foundation for future large-scale arrays for exploring the cosmic dark ages.
基金supported by National Natural Science Foundation of China(U2031133)National Key Research and Development Program of China(11941003)+4 种基金Applied Basic Research Program of Yunnan Province(2019FB009)Basic Research Program of Yunnan Province(202301AT070325)Square Kilometer Array(SKA)Project of the Ministry of Science and Technology of China(2020SKA0110202)International Partnership Program of the Chinese Academy of Sciences(114A11KYSB20200001)Kunming Municipal Foreign(International)Cooperation Base Project(GHJD-2021022).
文摘The high frequency-very high frequency(HF-VHF)frequency band is of significant importance in astronomical observations,with applications studying various phenomena such as space weather,solar radio emissions,planetary eruptions in the solar system,pulsars,transient sources,and reionization of the early universe.This article introduces the HF-VHF frequency band multifunctional radio astronomical terminal system based on a dual-channel high-speed acquisition board with a frequency observation range of 1-250 MHz and a sampling rate of 500 Msps(Mega samples per second).The maximum quantization bit of the system is 14 bits,with a maximum time resolution of 0.1 s and a maximum spectral resolution of 16 kHz.The system combines spectral analysis of solar radio signals and recording of time-domain data of signals interfering with long baselines,and adopts a server-client separation mode to allow remote operation with separate permissions.It is used in the China-Malaysia joint astronomy project,which can carry out single-site observation of solar radio signals as well as interferometric observation of signals from multiple sites.
基金partially supported by the National SKA Program of China(grant No.2022SKA0120103)the National Natural Science Foundation of China(Nos.11988101 and 11833009,12073036)+2 种基金support from the science research grants from the China Manned Space Project(CMS-CSST-2021-A01,CMS-CSST-2021-B01)the financial support from the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)the International Partnership Program of Chinese Academy of Sciences,grant No.114A11KYSB20170044。
文摘The triggering mechanism for radio lobes from late-type galaxies is not fully understood.More samples are desired for a thorough investigation and statistics.By utilizing the optical data from the newly released Dark Energy Spectroscopic Instrument imaging surveys and the radio sources from the NRAO VLA Sky Survey and the Faint Images of the Radio Sky at Twenty-centimeter,we identify four Late-type Galaxies with double Radio Lobes(La GRLs):J0217-3645,J0947+6220,J1412+3723 and J1736+5108.Including previously known La GRLs,we confirm the correlation between radio power P_(1.4GHz)and stellar mass M_(*)of host galaxies.Most(25/35)La GRLs belong to the blue cloud galaxies,while the newly identified cases in this work are located within the region of the red sequence.We find a clear correlation between the differential radio power,i.e.,the offset from the P_(1.4GHz)-M_(*)relation,and the galaxy color,indicating that bluer galaxies at a fixed M_(*)tend to host more powerful radio lobes.Furthermore,the majority(31/36)of La GRLs are either located in a galaxy group or displaying a disturbed morphology.We suggest that all of the galaxy mass,color and surrounding environment could play important roles in triggering radio lobes in late-type galaxies.
文摘The science of radio astronomy focuses on the observation and study of celestial objects by reading their radio waves. The 5 meter radio-telescope is able to observe different radio sources using a C-band LNB. This research was essentially focused on Crab Nebula, also known as Taurus A. The study led to interesting observations, which were validated numerically using various scientific computing software. The radio waves emitted by Taurus A are readable by the RTL-SDR, a software defined radio receiver. This device is capable of reading radio frequencies in the range of 0.5 MHZ to 1700 MHZ.
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.