Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechani...Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable m RNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs.展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve auto...The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber...This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.展开更多
The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and...The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.展开更多
Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS r...Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.展开更多
Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a s...Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides.展开更多
Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often...Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.展开更多
This study looks at the prevalence of swollen shoot disease in cocoa plantations in the Marahoué region of Côte d’Ivoire, a key cocoa-producing area. Cocoa accounts for around a third of the country’s expo...This study looks at the prevalence of swollen shoot disease in cocoa plantations in the Marahoué region of Côte d’Ivoire, a key cocoa-producing area. Cocoa accounts for around a third of the country’s export earnings, but production is under threat from the swollen shoot virus, which is causing major yield reductions. The aim of the study is to establish a link between the chemical properties of the soil and the presence of the disease, in particular the levels of carbon, nitrogen, phosphorus, calcium and acidity (pH) in the soil. Specifically, soils from healthy plots were compared with soils from infested plots in six plantations in the Bouaflé and Kononfla sub-prefectures. The results show that soils from infested plots have lower phosphorus levels and near-neutral acidity in the 20 - 40 cm soil layer, while soils from healthy plots are slightly acidic and contain more calcium and phosphorus. These chemical differences seem to influence the prevalence of the virus. Low phosphorus levels appear to be a key factor in the vulnerability of cocoa trees to the disease. The study therefore suggests that any strategy to combat swollen shoot should include better soil management, incorporating factors such as soil depth and the availability of essential nutrients. In addition, an assessment of the micro-organisms present in the soil could provide further information on the interactions between the soil and the disease.展开更多
Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproper...Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproperties of high sliming paste from a copper mine in China.Based on the rheological properties test,the pressure and velocity of pipeline and elbow are simulated by CFD under different mass concentrations and different stowing capacities.The results show that the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with high sliming and pumping agent at the same mass concentration,and the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with low sliming while without pumping agent.It is very important to add pumping agent to whole-tailings paste with high sliming,and the resistance changes with mass concentration and stowing capacity at the same cement-to-sand ratio of1:5and tailings-to-waste ratio of6:1.However,the change is just limited,that is to say,the paste transportation system is of good stability.Furthermore,at the elbow,the maximum pressure and velocity transfer to the outside of the pipe from the inside.However,lubricating layer is formed at the pipe wall because of high content of fine particles in whole-tailings paste,which will protect the elbow from abrasion.CFD provides an intuitive and accurate basis for pipeline transportation study,and would have a wider application space in the study of paste rheological properties and resistance reduction methods.展开更多
The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about ...The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.展开更多
In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting op...In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.展开更多
Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the ...Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.展开更多
Propagation properties of spatially pseudo-partially coherent Gaussian Schell-model beams through the atmo- spheric turbulence over a long-distance uplink path are studied by numerical simulation. A linear coordinatio...Propagation properties of spatially pseudo-partially coherent Gaussian Schell-model beams through the atmo- spheric turbulence over a long-distance uplink path are studied by numerical simulation. A linear coordination trans- formation is introduced to overcome the window effect and the loss-of-resolution problem. The beam spreading, beam wandering, and intensity scintillation as functions of turbulence strength, source correlation length, and change fre- quency of random phase that models the partial coherence of the source are analyzed. It is found that the beam spreading and the intensity scintillation of the partially coherent beam are less affected by the turbulence than those of the coherent one, but it suffers from a more severe diffractive effect, and the change frequency of random phase has no evident influence on it. The beam wandering is insensitive to the variation of source correlation length, and decreases firstly then goes to a fixed value as the change frequency increases.展开更多
in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve ...in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve times (days) of training were carried out展开更多
Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, pr...Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, previous studies focused on species dispersed via animal-mediated LDD, and ignored those dispersed by wind. The aim of this study was to assess the effects of canopy openness, edge, seed source, and patch tree density on the LDD of seeds by wind in forest. We collected birch seeds, a typical wind-dispersed species, throughout a larch plantation. We then assessed the relationship between birch LDD and each factor that may influence LDD of seeds by wind including distance to edge, canopy openness size, distance to mature forest, and the tree density of the larch plantation. We used univariate linear regression analysis to assess the influence of those factors on birch LDD, and partial correlations to calculate the contribution of each factor to LDD. The results showed that both canopy openness and edge had significant influences on birch LDD. Specifically, a negative relationship was observed between distance to edge and birch LDD, whereas there was a positive correlation between canopy openness size and LDD. In contrast, the distance to the mature forest was not correlated with birch LDD. Our results suggest that patch tree density could potently affect the probability of LDD by wind vectors, which provides novel and revealing insights regarding the effect of fragmentation on wind dynamics. The data also provide compelling evidence for the previously undocumented effect of habitat fragmentation on wind-dispersed organisms. As such, these observations will facilitate reasonable conservation planning, which requires a detailed understanding of the mechanisms by which patch properties hamper the delivery of seeds of wind-dispersed plants to fragmented areas.展开更多
基金supported by the 111 Project(Grant No.B17043)the 2115 Talent Development Program of China Agricultural University。
文摘Thousands of long-distance mobile mRNAs were identified from different grafting systems,based on high-throughput sequencing technology.Moreover,the long-distance delivery of RNAs was proved to involve multiple mechanisms.Here,we analyzed the homology,motif,and tRNA-like structure(TLS)of long-distance mobile mRNAs identified by RNA-seq as well as the RNA-binding protein(RBP)in nine grafting combinations including Arabidopsis thaliana,Vitis vinifera,Cucumis sativus,Citrullus lanatus,Nicotiana benthamiana,Malus domestica,Pyrus spp.,Glycine max and Phaseolus vulgaris.Although several mRNAs were found to be shared in herbaceous,woody,and related species,the vast majority of long-distance mobile mRNAs were species-specific.Four non-specific movement-related motifs were identified,while the TLS was not necessary for mRNA long distance mobility.In addition,we found that RBPs were conserved among herbaceous and woody plants as well as related species.This paper reports a further in-depth analysis of the endogenous mechanisms by which the species-specific transportable m RNAs were selected by bioinformatics,in order to provide insights for future research on long-distance mobile mRNAs.
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.
基金National Key Research and Development Program of China(2022YFD2202103)National Natural Science Foundation of China(31971798)+2 种基金Zhejiang Provincial Key Research&Development Plan(2023C02049、2023C02053)SNJF Science and Technology Collaborative Program of Zhejiang Province(2022SNJF017)Hangzhou Agricultural and Social Development Research Project(202203A03)。
文摘The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm.
文摘The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.
基金supported by the key project of the Natural Science Foundation of Chongqing(cstc2020jcyj-zdxmX0029)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202100412).
文摘Fermented bamboo shoots(FBS)is a region-specific food widely consumed in Southwestern China,with Lactobacillus as the predominant fermenting bacteria.However,the probiotic potential of Lactobacillus derived from FBS reminds largely unexplored,especially for diseases with a low prevalence in areas consuming FBS,namely,inflammatory bowel disease.In this study,Lactiplantibacillus pentosus YQ001 and Lentilactobacillus senioris YQ005 were screening by in vitro probiotic tests to further investigate the probioticlike bioactivity in dextran sulfate sodium(DSS)-induced ulcerative colitis(UC)mouse.They exhibited more positive probiotic effects than Lactobacillus rhamnosus GG in preventing intestinal inflammatory response.The results revealed that both strains improved the abundance of deficient intestinal microbiota in UC mice,including Muribaculaceae and Akkermansia.In the serum metabolome,they modulated the DSS-disturbed levels of metabolites,with significant increment of cinnamic acid.Meanwhile,they reduced the expression levels of interleukin-1β(IL-1β),interleukin-6(IL-6)inflammatory factors and increased zonula occludens-1(ZO-1),Occludin,and cathelicidin-related antimicrobial peptide(CRAMP)in the colon.Consequently,these results demonstrated that Lactobacillus spp.isolates derived from FBS showed promising probiotic activity based on the gut microbiome homeostasis modulation,anti-inflammation and intestinal barrier protection in UC mice.
基金funded by the NSFC(32371669)the Science and Technology Talent Project for Distinguished Young Scholars of Jilin Province(20240602009RC)+1 种基金the NSF of Jilin Province(20240101207JC)the Scientific Research Project of the Department of Education,Jilin Province(JJKH20230687KJ).
文摘Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal grass is vital for comprehending the response of grassland productivity to global warming.Here,we conducted a simulated experiment using potted Leymus chinensis,to study the relationship between the photosynthetic activ-ity of parent shoots and the production of daughter shoots under a whole(90 days)summer warming scenario(+3°C).The results showed that the biomass of parents and buds decreased by 25.52%and 33.45%,respectively,under warming conditions.The reduction in parent shoot biomass due to warming directly resulted from decreased leaf area(18.03%),chlorophyll a(18.27%),chlorophyll b(29.21%)content,as well as a reduction in net photosynthetic rate(7.32%)and the maximum quantum efficiency of photosystem II(PSII)photochemistry(4.29%).The decline in daughter shoot biomass was linked to a decrease in daughter shoot number(33.33%)by warming.However,the number of belowground buds increased by 46.43%.The results indicated that long-term summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-stoma.Consequently,the parent shoot allocates relatively more biomass to the belowground organs to maintain the survival and growth of buds.Overall,buds,as a potential aboveground population,could remedy for the cur-rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides.
基金This research was supported by the National Natural Science Foundation of China No.62276086the National Key R&D Program of China No.2022YFD2000100Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGN23D010002.
文摘Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea.Traditional tea-picking machines may compromise the quality of the tea leaves.High-quality teas are often handpicked and need more delicate operations in intelligent picking machines.Compared with traditional image processing techniques,deep learning models have stronger feature extraction capabilities,and better generalization and are more suitable for practical tea shoot harvesting.However,current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks.We propose a tea shoot instance segmentation model based on multi-scale mixed attention(Mask2FusionNet)using a dataset from the tea garden in Hangzhou.We further analyzed the characteristics of the tea shoot dataset,where the proportion of small to medium-sized targets is 89.9%.Our algorithm is compared with several mainstream object segmentation algorithms,and the results demonstrate that our model achieves an accuracy of 82%in recognizing the tea shoots,showing a better performance compared to other models.Through ablation experiments,we found that ResNet50,PointRend strategy,and the Feature Pyramid Network(FPN)architecture can improve performance by 1.6%,1.4%,and 2.4%,respectively.These experiments demonstrated that our proposed multi-scale and point selection strategy optimizes the feature extraction capability for overlapping small targets.The results indicate that the proposed Mask2FusionNet model can perform the shoot segmentation in unstructured environments,realizing the individual distinction of tea shoots,and complete extraction of the shoot edge contours with a segmentation accuracy of 82.0%.The research results can provide algorithmic support for the segmentation and intelligent harvesting of premium tea shoots at different scales.
文摘This study looks at the prevalence of swollen shoot disease in cocoa plantations in the Marahoué region of Côte d’Ivoire, a key cocoa-producing area. Cocoa accounts for around a third of the country’s export earnings, but production is under threat from the swollen shoot virus, which is causing major yield reductions. The aim of the study is to establish a link between the chemical properties of the soil and the presence of the disease, in particular the levels of carbon, nitrogen, phosphorus, calcium and acidity (pH) in the soil. Specifically, soils from healthy plots were compared with soils from infested plots in six plantations in the Bouaflé and Kononfla sub-prefectures. The results show that soils from infested plots have lower phosphorus levels and near-neutral acidity in the 20 - 40 cm soil layer, while soils from healthy plots are slightly acidic and contain more calcium and phosphorus. These chemical differences seem to influence the prevalence of the virus. Low phosphorus levels appear to be a key factor in the vulnerability of cocoa trees to the disease. The study therefore suggests that any strategy to combat swollen shoot should include better soil management, incorporating factors such as soil depth and the availability of essential nutrients. In addition, an assessment of the micro-organisms present in the soil could provide further information on the interactions between the soil and the disease.
基金Project(2016YFC0600709)supported by the National Key R&D Program of ChinaProject(51574013)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-17-024A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Based on Bingham rheological model,a three-dimensional numerical simulation model for long-distance pipeline transportation is established by computational fluid dynamics(CFD)to study the pipeline transportationproperties of high sliming paste from a copper mine in China.Based on the rheological properties test,the pressure and velocity of pipeline and elbow are simulated by CFD under different mass concentrations and different stowing capacities.The results show that the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with high sliming and pumping agent at the same mass concentration,and the pipeline resistance of whole-tailings paste with high sliming while without pumping agent is much higher than that with low sliming while without pumping agent.It is very important to add pumping agent to whole-tailings paste with high sliming,and the resistance changes with mass concentration and stowing capacity at the same cement-to-sand ratio of1:5and tailings-to-waste ratio of6:1.However,the change is just limited,that is to say,the paste transportation system is of good stability.Furthermore,at the elbow,the maximum pressure and velocity transfer to the outside of the pipe from the inside.However,lubricating layer is formed at the pipe wall because of high content of fine particles in whole-tailings paste,which will protect the elbow from abrasion.CFD provides an intuitive and accurate basis for pipeline transportation study,and would have a wider application space in the study of paste rheological properties and resistance reduction methods.
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
文摘The limited physical size for autonomous underwater vehicles (AUV) or unmanned underwater vehicles (UUV) makes it difficult to acquire enough space gain for localizing long-distance targets. A new technique about long-distance target apperception with passive synthetic aperture array for underwater vehicles is presented. First, a synthetic aperture-processing algorithm based on the FFT transform in the beam space (BSSAP) is introduced. Then, the study on the flank array passive long-distance apperception techniques in the frequency scope of 11-18 kHz is implemented from the view of improving array gains, detection probability and augmenting detected range under a certain sea environment. The results show that the BSSAP algorithm can extend the aperture effectively and improve detection probability. Because of the augment of the transmission loss, the detected range has the trend of decline with the increase of frequency under the same target source level. The synthesized array could improve the space gain by nearly 7 dB and SNR is increased by about 5 dB. The detected range is enhanced to nearly 2 km under the condition of 108-118 dB of the target source level for AUV system in measurement interval of nearly 1 s.
基金supported by the National Natural Science Foundation of China(7170120971771216)+1 种基金Shaanxi Natural Science Foundation(2019JQ-250)China Post-doctoral Fund(2019M653962)
文摘In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.
基金supported by the Innovation Platform for Through Process Modeling and Simulation of Advanced Materials Processing Technologies(No.2012ZX04012011)the National Science Foundation of China(No.51575304)
文摘Core shooting process plays a decisive role in the quality of sand cores, and core box vents distribution is one of the most important factor determining the effectiveness of core shooting process. In this paper, the influence of core box vents distribution on the flow dynamics of core shooting process was investigated based on in situ experimental observations with transparent core box, high-speed camera and pressure measuring system. Attention was focused on the variation of both the flow behavior of sand and pressure curves due to different vents distribution. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive model was established to describe the internal momentum transfer in the solid phase. Two-fluid model(TFM) simulation was then performed and good agreement was achieved between the experimental and simulated results on both the flow behavior of sand and the pressure curves. It was found that vents distribution has direct effect on the pressure difference of different locations in the core box, which determines the buoyancy force exerting on the sand particles and significantly influences the filling process of core sand.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61107066 and 40805006)
文摘Propagation properties of spatially pseudo-partially coherent Gaussian Schell-model beams through the atmo- spheric turbulence over a long-distance uplink path are studied by numerical simulation. A linear coordination trans- formation is introduced to overcome the window effect and the loss-of-resolution problem. The beam spreading, beam wandering, and intensity scintillation as functions of turbulence strength, source correlation length, and change fre- quency of random phase that models the partial coherence of the source are analyzed. It is found that the beam spreading and the intensity scintillation of the partially coherent beam are less affected by the turbulence than those of the coherent one, but it suffers from a more severe diffractive effect, and the change frequency of random phase has no evident influence on it. The beam wandering is insensitive to the variation of source correlation length, and decreases firstly then goes to a fixed value as the change frequency increases.
文摘in order to verify the heat-tolerance effect, two trainings, 90 min marching with load (WBGT 24. 6~35.6℃) and 10 km running (WBGT 25.0~31.1℃) were performed in laboratory and field under hot climate.Ten to twelve times (days) of training were carried out
基金National Natural Science Foundation of China(No.31300526)National Key Technologies R&D Program of China(No.2012BAD22B04)Chinese Forest Ecosystem Research Network&GENE Award Funds on Ecological Paper
文摘Seed long-distance dispersal(LDD) events are typically rare, but are important in the population processes that determine large-scale forest changes and the persistence of species in fragmented landscapes. However, previous studies focused on species dispersed via animal-mediated LDD, and ignored those dispersed by wind. The aim of this study was to assess the effects of canopy openness, edge, seed source, and patch tree density on the LDD of seeds by wind in forest. We collected birch seeds, a typical wind-dispersed species, throughout a larch plantation. We then assessed the relationship between birch LDD and each factor that may influence LDD of seeds by wind including distance to edge, canopy openness size, distance to mature forest, and the tree density of the larch plantation. We used univariate linear regression analysis to assess the influence of those factors on birch LDD, and partial correlations to calculate the contribution of each factor to LDD. The results showed that both canopy openness and edge had significant influences on birch LDD. Specifically, a negative relationship was observed between distance to edge and birch LDD, whereas there was a positive correlation between canopy openness size and LDD. In contrast, the distance to the mature forest was not correlated with birch LDD. Our results suggest that patch tree density could potently affect the probability of LDD by wind vectors, which provides novel and revealing insights regarding the effect of fragmentation on wind dynamics. The data also provide compelling evidence for the previously undocumented effect of habitat fragmentation on wind-dispersed organisms. As such, these observations will facilitate reasonable conservation planning, which requires a detailed understanding of the mechanisms by which patch properties hamper the delivery of seeds of wind-dispersed plants to fragmented areas.