A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi...A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.展开更多
The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composi...The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.展开更多
Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated w...Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.展开更多
Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin imp...Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.展开更多
Polypropylene, carbon, aramid and polyethylene fibers reinforced cement composites were fabricated respectively. Their fracture behaviors were observed using scanning electron microscopy and the bonding between fiber ...Polypropylene, carbon, aramid and polyethylene fibers reinforced cement composites were fabricated respectively. Their fracture behaviors were observed using scanning electron microscopy and the bonding between fiber and matrix was observed in detail.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as therma...Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as thermal insulation materials.However,preparing the coatings with excellent oxidation and ablation resistance while avoiding evident damage to the C/CA substrate still remains a challenge.Herein,a SiC@SiO_(2)nanowire-toughened ZrB2–SiC/SiC bilayer coating with a large thickness of 500μm was prepared on C/CA using a one-step low-temperature reaction sintering method,which simultaneously formed a sintered outer layer with even-distributed nanowires and a siliconized gradient inner layer.By courtesy of the synergic thermal response of the layers and the crack deflection induced by the nanowires,the resulting coating has moderate residual compressive stress of 0.08–1.22 GPa in the interface,high interfacial bonding strength of 6.02 MPa,and good fracture toughness of 4.36 MPa·m^(1/2).Benefited from the optimum components and improved structure,the coating shows excellent cyclic ablation resistance with linear ablation rates of 0.1μm/s at 1650℃for 1500 s(300 s×5 cycles)and 0.4μm/s at 1850℃for 900 s(300 s×3 cycles).The one-step preparation strategy contributes to little damage to the substrate,thus showing the well-preserved mechanical and thermal insulation properties.展开更多
Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties o...Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties of the composites. The SCS-6 SiC fiber reinforced Ti-6Al-4V matrix composite was prepared by foil-fiber-foil (FFF) method at ONERA, France. Stripe samples were cut from the as-consolidated composites and sealed in silicon carbide tube. One group of the samples were annealed for 58h at 550°C, 700°C, 850°C and 1000°C, the other group were annealed at 1000°C for 43h, 58h, 80h, lOOh, respectively. The interface investigation indicated that the connection between SiC fiber and the matrix is favorite in the composite. And the interface width for as-consolidated composite is only about 0.8um. The interface width increase with the prolong of annealing time and the increase of annealing temperature. But the increment for the latter is not as high as the former one, which means the annealing time may be the prior factor to influence the interface reaction. The interface width for the composite annealed at 1000°C for lOOh is about 20um. Interface composition of the composite detected by EDX is as follows: Ti 87.58 wt %, V 4.91 wt %, Al 4.06wt%, Si 3.45 wt %.展开更多
纤维与基体的界面对复合材料的力学性能和耐久性有很大影响。相比于传统界面测试方法得到的界面剪切强度(IFSS),采用横向纤维束拉伸试验测得的横向拉伸界面强度可直观地反映纤维束与树脂间的界面性能,同时不受纤维组织微结构的影响,是...纤维与基体的界面对复合材料的力学性能和耐久性有很大影响。相比于传统界面测试方法得到的界面剪切强度(IFSS),采用横向纤维束拉伸试验测得的横向拉伸界面强度可直观地反映纤维束与树脂间的界面性能,同时不受纤维组织微结构的影响,是树脂传递模塑(Resin transfer moul-ding, RTM)成型三维机织复合材料性能预测所需的重要参数。本工作建立了一种考虑纤维与树脂的热膨胀系数差异以及树脂固化收缩影响的横向纤维束拉伸试样的有限元模型,分析界面处的横向应力分布和破坏模式。然后用RTM工艺制备碳纤维束增强环氧树脂横向拉伸试验件,结果验证了模型的准确性。比较不同横向拉伸试样在界面处的受力状态,结果表明,十字型试样能有效改善边缘应力集中的现象,且在界面中心区域受力均匀,得到的横向拉伸强度更加精确。此外,讨论了十字型样品的伸出端宽度、长度等特征尺寸以及增强纤维类型对测试结果的影响。在选择纤维束横向拉伸试样时,为获得更加准确的界面横向拉伸强度,试样伸出端的宽度应尽可能大一些,但需要小于伸出端总长度的1/2以获得理想的破坏模式。展开更多
文摘A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs.
文摘The purpose of this study is to investigate the effect of the concentration of silane coupling solution on the tensile strength of basalt fiber and the interfacial properties of basalt fiber reinforced polymer composites.The surface treatment of basalt fibers was carried out using an aqueous alcohol solution method.Basalt fibers were subjected to surface treatment with 3-Methacryloxypropyl trimethoxy silane at 0.5 wt.%,1 wt.%,2 wt.%,4 wt.%and 10 wt.%.The basalt monofilament tensile tests were carried out to investigate the variation in strength with the concentration of the silane coupling agent.The microdroplet test was performed to examine the effect of the concentration of the silane coupling agent on interfacial strength of basalt reinforced polymer composites.The film was formed on the surface of the basalt fiber treated silane coupling agent solution.The tensile strength of basalt fiber increased because the damaged fiber surface was repaired by the firm of silane coupling agent.The firm was effective in not only the surface protection of basalt fiber but also the improvement on the interfacial strength of fiber-matrix interface.However,the surface treatment using the high concentration silane coupling agent solution has an adverse effect on the mechanical properties of the composite materials,because of causing the degradation of the interfacial strength of the composite materials.
基金supported by the National Natural Science Foundation of China (Project Nos. 31010103905 and31070507)Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-11-0608)the Fundamental Research Funds for the Central Universities (DL12DB02)
文摘Kevlar fiber (KF) is a synthesized product with strong mechanical properties. We used KF as a reinforcement to improve the mechanical properties of wood-flour/polypropylene (WF/PP) composites. KF was pretreated with NaOH to improve its compatibility with the thermoplastic matrix. Maleated polypropylene (MAPP) was used as a coupling agent to improve the interfacial adhesion between KF, WF, and PP. Incorporation of KF improved the mechanical properties of WF/PP composites. Treatment of KF with NaOH resulted in further improvement in mechanical strength. Addition of 3% MAPP and 2% hydrolyzed KF (HKF) led to an increment of 93.8% in unnotched impact strength, 17.7% in notched impact strength, 86.8% in flexure strength, 50.8% in flexure modulus, and 94.1% in tensile strength compared to traditional WF/PP composites. Scanning electron microscopy of the cryo-fractured section of WF/PP showed that the HKF surface was rougher than the virgin KF, and the KF was randomly distributed in the composites, which might cause a mechanical interlocking between KF and polypropylene molecules in the composites.
文摘Previously, Polyvinyl Alcohol (PVA) and phenolic resin were used for resin impregnated bamboo fiber reinforced PP composites which was manufactures for resin impregnated bamboo fiber with polypropylene (PP). Resin impregnation method can show improvement on tensile strength of fiber. However, to reduce the contact surface area and low inter-facial shear strength (IFSS) between impregnated resin and matrix, using 40% weight fraction of bamboo fiber in PP matrix, PVA impregnated composites with mean flexural and tensile strength 10% higher than untreated composites were produced butphenolic resin impregnated fiber reinforced composition’s mechanical properties were decreased. In this study maleic anhydride grafted polypropylene (MAPP) was used to increase interfacial shear strength between resin impregnated fiber and PP. With 10% MAPP, IFSS between resin impregnated fiber and PP increased more than 100% and reinforced composites. MAPP with untreated, phenolic resin and PVA impregnated cases showed similar mechanical properties. Yet in water absorption test, the PVA treatment with bamboo/PP composites increased water absorption ratio. But with 10% MAPP, matrix PP water absorption ratio decreased like phenolic resin impregnated fiber reinforced composites. 10% MAPP with resin impregnated bamboo fiber reinforced PP composites can improve IFSS, mechanical properties of composite and can decrease water absorption PVA resin impregnated bamboo fiber reinforced composites.
基金Supported by China Natural Science Foundation(29874030)
文摘Polypropylene, carbon, aramid and polyethylene fibers reinforced cement composites were fabricated respectively. Their fracture behaviors were observed using scanning electron microscopy and the bonding between fiber and matrix was observed in detail.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
基金the Defense Industrial Technology Development Program(No.JCKY2021130B007)the National Natural Science Foundation of China(Nos.52272075 and 52188101)+1 种基金the Research Fund of Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2021190)the directional institutionalized scientific research platform relies on China Spallation Neutron Source of Chinese Academy of Sciences,and the National Key R&D Program of China(No.2021YFA1500804).
文摘Preparing antioxidant coatings to address the inherent oxidation sensitivity of carbon fiber-reinforced carbon aerogel(C/CA)composites is a feasible way to promote their application in oxidizing environments as thermal insulation materials.However,preparing the coatings with excellent oxidation and ablation resistance while avoiding evident damage to the C/CA substrate still remains a challenge.Herein,a SiC@SiO_(2)nanowire-toughened ZrB2–SiC/SiC bilayer coating with a large thickness of 500μm was prepared on C/CA using a one-step low-temperature reaction sintering method,which simultaneously formed a sintered outer layer with even-distributed nanowires and a siliconized gradient inner layer.By courtesy of the synergic thermal response of the layers and the crack deflection induced by the nanowires,the resulting coating has moderate residual compressive stress of 0.08–1.22 GPa in the interface,high interfacial bonding strength of 6.02 MPa,and good fracture toughness of 4.36 MPa·m^(1/2).Benefited from the optimum components and improved structure,the coating shows excellent cyclic ablation resistance with linear ablation rates of 0.1μm/s at 1650℃for 1500 s(300 s×5 cycles)and 0.4μm/s at 1850℃for 900 s(300 s×3 cycles).The one-step preparation strategy contributes to little damage to the substrate,thus showing the well-preserved mechanical and thermal insulation properties.
文摘Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties of the composites. The SCS-6 SiC fiber reinforced Ti-6Al-4V matrix composite was prepared by foil-fiber-foil (FFF) method at ONERA, France. Stripe samples were cut from the as-consolidated composites and sealed in silicon carbide tube. One group of the samples were annealed for 58h at 550°C, 700°C, 850°C and 1000°C, the other group were annealed at 1000°C for 43h, 58h, 80h, lOOh, respectively. The interface investigation indicated that the connection between SiC fiber and the matrix is favorite in the composite. And the interface width for as-consolidated composite is only about 0.8um. The interface width increase with the prolong of annealing time and the increase of annealing temperature. But the increment for the latter is not as high as the former one, which means the annealing time may be the prior factor to influence the interface reaction. The interface width for the composite annealed at 1000°C for lOOh is about 20um. Interface composition of the composite detected by EDX is as follows: Ti 87.58 wt %, V 4.91 wt %, Al 4.06wt%, Si 3.45 wt %.
文摘纤维与基体的界面对复合材料的力学性能和耐久性有很大影响。相比于传统界面测试方法得到的界面剪切强度(IFSS),采用横向纤维束拉伸试验测得的横向拉伸界面强度可直观地反映纤维束与树脂间的界面性能,同时不受纤维组织微结构的影响,是树脂传递模塑(Resin transfer moul-ding, RTM)成型三维机织复合材料性能预测所需的重要参数。本工作建立了一种考虑纤维与树脂的热膨胀系数差异以及树脂固化收缩影响的横向纤维束拉伸试样的有限元模型,分析界面处的横向应力分布和破坏模式。然后用RTM工艺制备碳纤维束增强环氧树脂横向拉伸试验件,结果验证了模型的准确性。比较不同横向拉伸试样在界面处的受力状态,结果表明,十字型试样能有效改善边缘应力集中的现象,且在界面中心区域受力均匀,得到的横向拉伸强度更加精确。此外,讨论了十字型样品的伸出端宽度、长度等特征尺寸以及增强纤维类型对测试结果的影响。在选择纤维束横向拉伸试样时,为获得更加准确的界面横向拉伸强度,试样伸出端的宽度应尽可能大一些,但需要小于伸出端总长度的1/2以获得理想的破坏模式。