期刊文献+
共找到9,193篇文章
< 1 2 250 >
每页显示 20 50 100
A white long-lasting phosphor Y_2O_2S:Tb^(3+), Sm^(3+): an improvement of Y_2O_2S:Tb^(3+) 被引量:3
1
作者 林林 陈坤 +4 位作者 王志芳 游宝贵 陈永虎 张慰萍 施朝淑 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第5期648-651,共4页
As an improvement of reported Y2O2S:Tb^3+, a white-light long-lasting phosphor: Y2O2S:Tb^3+, Sm^3+ was prepared by the solid-state reaction. The photo-luminescence spectra showed that the position and shape of T... As an improvement of reported Y2O2S:Tb^3+, a white-light long-lasting phosphor: Y2O2S:Tb^3+, Sm^3+ was prepared by the solid-state reaction. The photo-luminescence spectra showed that the position and shape of Tb^3+ and Sm^3+ emissions under UV excitation were similar in this host, which ensured a stable white emission color (daylight standard of IEC) under different excitations. The decay curves of co-doped samples indicated that the decay times of emissions of the two ions were close. The thermo-luminescence measurement suggested that the traps created by the doped Sm^3+ ions were helpful to postpone the white afterglow of co-doped samples. Therefore, the function of co-doped Sm^3+ ions was confirmed as improving the white emission colors of samples and acting as new trap centers. 展开更多
关键词 TERBIUM SAMARIUM WHITE long-lasting phosphor rare earths
下载PDF
A Novel White Light Emitting Long-lasting Phosphor 被引量:3
2
作者 BingFuLEI YingLiangLIU +1 位作者 ZeRenYE ChunShanSHI 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第3期335-338,共4页
A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly ev... A novel white light emitting long-lasting phosphor Cd1-xDyxSiO3 is reported in this letter. The Dy3+ doped CdSiO3 phosphor emits white light. The phosphorescence can be seen with the naked eye in the dark clearly even after the 254 nm UV irradiation have been removed for about 30 min. In the emission spectrum of 5% Dy3+ doped CdSiO3 phosphor, there are two emission peaks of Dy3+, 580 nm (4F9/26H13/2) and 486 nm (4F9/26H15/2), as well as a broad band emission located at about 410 nm. All the three emissions form a white light with CIE chromaticity coordinates x=0.3874, y=0.3760 and the color temperature is 4000 K under 254 nm excitation. It indicated that this phosphor is a promising new luminescent material for practice application. 展开更多
关键词 Cadmium metasilicate white light long-lasting phosphor dysprosium ion.
下载PDF
Photo-luminescence properties and thermo-luminescence curve analysis of a new white long-lasting phosphor: Ca_2MgSi_2O_7:Dy^(3+) 被引量:2
3
作者 林林 赵仲华 +2 位作者 张慰萍 郑志强 尹民 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期749-752,共4页
A white long-lasting phosphor Ca2MgSi2O7:Dy3+ was prepared by the solid-state reaction. A strong band peaked at 260 nm was shown in the excitation spectrum of 578 nm emission, which might be attributed to the oxygen d... A white long-lasting phosphor Ca2MgSi2O7:Dy3+ was prepared by the solid-state reaction. A strong band peaked at 260 nm was shown in the excitation spectrum of 578 nm emission, which might be attributed to the oxygen deficiency of the host. After irradiated with 254 nm for 4 min, the white afterglow of the sample could be seen for 3 h. Moreover, the depths and frequency factors of trap centers were calculated from the thermo-luminescence curve of the sample, which indicated that the trap centers corresponding to the 414 K band were more helpful to the long-lasting phosphorescence. 展开更多
关键词 white long-lasting phosphor SILICATE DYSPROSIUM THERMO-LUMINESCENCE rare earths
下载PDF
Characterization of Y_2O_2S∶Eu ^(3+), Mg^(2+), Ti^(4+) Long-Lasting Phosphor Synthesized by Flux Method 被引量:8
4
作者 王育华 王治龙 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第1期25-28,共4页
Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased w... Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed. 展开更多
关键词 Y2O2S: Eu^3 Mg^2 Ti^4 flux method long-lasting phosphorescence material rare earths
下载PDF
Preparation of Long-Lasting Phosphorescence (LLP) Glass-Ceramic Materials
5
作者 李成宇 苏锵 王淑彬 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第1期67-69,共3页
Three kinds of glass-ceramics, i.e., Mn 2+ doped zinc borosilicate, Eu 2+, Dy 3+ co-doped strontium aluminoborate and Eu 2+, Nd 3+ co-doped calcium aluminoborate were prepared, whose phosphorescence emission band... Three kinds of glass-ceramics, i.e., Mn 2+ doped zinc borosilicate, Eu 2+, Dy 3+ co-doped strontium aluminoborate and Eu 2+, Nd 3+ co-doped calcium aluminoborate were prepared, whose phosphorescence emission band peaks at 525, 516 and 464 nm, respectively. In preparation of these glass-ceramics the base glasses were gained by heating the mixed starting materials at high temperature to get the transparent glasses; then those glasses were heat-treated and turned to opaque glass-ceramics. X-ray diffraction (XRD) shows that the crystallites are ZnSiO 4, SrAl 2O 4 and α-CaAl 2B 2O 7, respectively. It is a useful way to get new LLP materials by the method reported in this work that may be considered as “from glass to crystal”. 展开更多
关键词 OPTICS LUMINESCENCE GLASS-CERAMIC heat-treatment long-lasting phosphorescence rare earths
下载PDF
Soft chemical synthesis and luminescence properties of red long-lasting phosphors Y_2O_2S:Sm^(3+)
6
作者 Yan-juan Li Ming-wen Wang +2 位作者 Lu-dan Zhang Duo Gao Shi-xiang Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第10期972-977,共6页
Sm3+-activated Y2028 red phosphors were prepared by the combustion method and microemulsion method at the first time. X-ray characterization and electron diffraction show that, Y202S:Sm3+, Ti4+, Mg2+ samples prep... Sm3+-activated Y2028 red phosphors were prepared by the combustion method and microemulsion method at the first time. X-ray characterization and electron diffraction show that, Y202S:Sm3+, Ti4+, Mg2+ samples prepared by these two methods are pure hexagonal crystals in structure with a trivial change due to dopants. Scanning electron microscopy (SEM) results show that the product presents an almond-like sheet in uniform size. Under the excitation of 269 nm ultraviolet light, Y202S:Sm3+ samples fabricated by these two methods exhibit three main groups of red emission lines located at 564, 604, and 656 nm, respectively, which are attributed to the transitions of 4G5/2 →6H5/2, 4G~/2 →6H7/2, 4G5/2 →6H9/2, respectively. The samples prepared by microemulsion are seven times higher in fluorescent emission intensity and half time longer in afterglow time than that prepared by combustion. 展开更多
关键词 phosphorS soft chemical synthesis LUMINESCENCE combustion MICROEMULSION
下载PDF
Synthesis and luminescence properties of Eu^(3+),Sm^(3+) doped(Y_xGd_(1-x))_2O_3:Si^(4+),Mg^(2+) long-lasting phosphor
7
作者 Yan Liu Shi-xiang Liu Ming-wen Wang Wen-jun Li Ting Zhang Xia Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期347-352,共6页
A novel red long-lasting phosphor, (YxGd1-x)2O3:Eu3+, Sm3+, Si4+, Mg2+, was synthesized by the co-precipitation method using oxalate precipitation as the precursor. X-ray diffraction (XRD), scanning electroni... A novel red long-lasting phosphor, (YxGd1-x)2O3:Eu3+, Sm3+, Si4+, Mg2+, was synthesized by the co-precipitation method using oxalate precipitation as the precursor. X-ray diffraction (XRD), scanning electronic microscopy (SEM), integrated thermal analyzer (TG), and photoluminescence spectra (PL) as well as the ST-900PM weak light photometer were used to study the synthesis conditions, morphology, luminescence properties, and the decay time of the phosphor. The XRD results show that the products synthesized at 1400~C for 4 h have good crystallization without any detectable impurity phases. Based on the PL spectra, the optimal conditions are as the following. The molar ratios of Y3+ to Gd3+ and Eu3+ to Sm3+ are 2:8 and 3:1, respectively, and the contents of Mg2+ and SiO2 are 5mol% and 3mol%, respectively. The decay time monitored by the ST-900PM weak light photometer is 7200 s, increasing 44% and 100%, respectively, compared with the Eu3+ and Sm3+ single-doped phosphors. The results indicate that the energy transfer is from Sm3+ to Eu3+ ion, and Sm3+ is a good sensitizer to Eu3+. 展开更多
关键词 long lasting phosphor LUMINESCENCE energy transfer
下载PDF
Synthesis of M1-3xAl2O4:Eu2+x/Dy3+ 2x(M^2+= Sr^2+, Ca^2+ and Ba^2+) phosphors with long-lasting phosphorescence properties via co-precipitation method 被引量:1
8
作者 Jinkai Li Bin Liu +2 位作者 Qi Chen Yizhong Lu Zongming Liu 《Chemical Reports》 2019年第2期112-117,共6页
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r... The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display. 展开更多
关键词 long AFTERGLOW material CO-PRECIPITATION method M1-3xAl2O4:Eu2+ x/Dy3+ 2x(M2+= Sr2+ Ca2+ and Ba2+) phosphorS luminescent property
下载PDF
Long-lasting phosphorescence study on Y_3Al_5O_(12) doped with different concentrations of Ce^(3+) 被引量:9
9
作者 张粟 李成宇 +3 位作者 庞然 姜丽宏 师丽丽 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第5期426-430,共5页
Long-lasting phosphorescence (LLP) was observed in Ce-doped Y3Al5O12 phosphors synthesized in reducing atmosphere. The characteristic emission of the 2D–2F5/2 and 2D–2F7/2 transition of Ce3+ in photoluminescence ... Long-lasting phosphorescence (LLP) was observed in Ce-doped Y3Al5O12 phosphors synthesized in reducing atmosphere. The characteristic emission of the 2D–2F5/2 and 2D–2F7/2 transition of Ce3+ in photoluminescence (PL) and LLP spectra was studied. It was interesting that the ratio between the peak areas of 2D–2F5/2 and 2D–2F 7/2 transitions in the PL spectrum was different from the ratio of that in LLP emission spectrum. And the ratios had different change regularities with increased Ce3+ concentration. The possible reason was attributed to the defect in the YAG host,which was affected by increasing the Ce3+ concentration. There were indications that the defect in the Ce3+-doped YAG samples was strongly associated with oxygen vacancy. And the defect levels were studied through thermoluminescence (TL) experiment. The results showed that the trap depth was between 0.6 and 0.65 eV,and the kinetic order of the LLP was 2. 展开更多
关键词 YAG CERIUM DEFECTS long-lasting phosphorescence rare earths
原文传递
Luminescent properties of blue long-lasting phosphorescence phosphors Sr_6Al_(18)Si_2O_(37):Eu^(2+),RE^(3+) 被引量:3
10
作者 赵然 庞然 +4 位作者 李海锋 贾永雷 姜丽宏 孙文芝 李成宇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第9期797-801,共5页
A series of novel blue long-lasting phosphorescence phosphors Sr6A118Si2037:Eu^2+,RE^3+ (RE3+=Ho^3+, Gd^3+, Dy^3+ and Pr^3+) were prepared by the conventional high-temperature solid-state reaction in a reduc... A series of novel blue long-lasting phosphorescence phosphors Sr6A118Si2037:Eu^2+,RE^3+ (RE3+=Ho^3+, Gd^3+, Dy^3+ and Pr^3+) were prepared by the conventional high-temperature solid-state reaction in a reductive atmosphere. Their properties were systemati- cally investigated utilizing X-ray diffraction (XRD), photoluminescence, phosphorescence and thermoluminescence (TL) spectra. The phosphors emitted blue light that was related to the emission of E~+ due to 5d-4f transition. Bright blue long-lasting phosphorescence (LLP) could be observed after the excitation source was switched off. For the optimized sample, the blue long-lasting phosphores- cence could last for nearly 4 h in the light perception of the dark-adapted human eye (0.32 mcd/m2). The effects of RE3+ ions on phosphorescence properties of the phosphors were studied, and the results showed that the co-doping of RE^3+ ions greatly enhanced the intensity of the peak around 315 K which was related to the long lasting phosphorescence of the phosphors at room temperature and consequently improved the performance of the blue phosphorescence such as intensity and persistent time. 展开更多
关键词 strontium aluminosilicate defects long-lasting phosphorescence LUMINESCENCE rare earths
原文传递
Phosphorescence properties and energy transfer of red long-lasting phosphorescent(LLP) material β-Zn_3(PO_4)_2:Mn^(2+),Pr^(3+) 被引量:1
11
作者 谢婷 郭鸿旭 +5 位作者 张俊英 Christopher Odetola 何裕能 林珩 陈国良 郑子山 《Journal of Rare Earths》 SCIE EI CAS CSCD 2015年第10期1056-1063,共8页
The red long-lasting phosphorescent (LLP) of β-Zn3(POa)2:Mn2+,pr3+ material was prepared through combustion and conventional solid-state sintering methods. The influence of Pr3+ ions on luminescence and LLP o... The red long-lasting phosphorescent (LLP) of β-Zn3(POa)2:Mn2+,pr3+ material was prepared through combustion and conventional solid-state sintering methods. The influence of Pr3+ ions on luminescence and LLP of Mn2+ in 13-Zn3(POa)2:Mn2+,pr3+ phosphor was systematically investigated. The phosphor presented a strong photoluminescence peak at 620 nm attributed to the 4T1g→ 6A1 g transition of Mn2+ ions in octahedral coordination. Red LLP was observed in β-Zn3(PO4)2:Mn2+,Pr3+ phosphors with persistence time for more than 2 h. It was found that the long persistent phosphorescent performance of Mn2+ such as brightness and duration was improved by the energy transfer from Pr3+ to Mn2+ when Pr3+ ions as sensitizers were doped into matrix. The fact that the TL peak at low temperature was largely enhanced in Mn2+, Pr3+ codoped ^-Zn3(PO4)2 phosphor showed the significant increase of defect concentration with suitable depth. There existed two factors working together to be responsible for the enhancement of LLP performance in β-Zn3(PO4)2:Mn2+,Pr3+. 展开更多
关键词 long-lasting phosphorescent energy transfer Zn3(PO4)2 rare earths
原文传递
Luminescence properties of a new yellow long-lasting phosphorescence phosphor NaAlSiO_4:Eu^(2+),Ho^(3+) 被引量:4
12
作者 庞然 赵然 +2 位作者 贾永雷 李成宇 苏锵 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第9期792-796,共5页
A new aluminosilicate long-lasting phosphor with composition of NaA1SiO4:Eu2+,Ho3+ was synthesized and investigated. Under UV light excitation, the phosphor emitted yellow light corresponding to the characteristic ... A new aluminosilicate long-lasting phosphor with composition of NaA1SiO4:Eu2+,Ho3+ was synthesized and investigated. Under UV light excitation, the phosphor emitted yellow light corresponding to the characteristic emission of Eu2+ due to 5d-4f transi- tion. Bright yellow phosphorescence sustaining for more than 30 rain was observed after ceasing the excitation. The phosphorescence intensity decay obeyed a fl decay law, indicating a tunneling electron-hole recombination process in the phosphor. Four peaks ap- peared in the thermoluminescence curve and the ones at 322 and 370 K were thought to account for the long lasting phosphorescence at room temperature. The Ho3+ ion incorporated into the phosphor did not give any light but dramatically increased the intensities of both photoluminescence and phosphorescence via promoting defect levels in the phosphor. 展开更多
关键词 NaAlSiO4 LUMINESCENCE long lasting phosphorescence phosphor rare earths
原文传递
Long-Lasting Properties of Rare Earth-Doped Y_2O_2S Phosphors 被引量:1
13
作者 雷炳富 刘应亮 +3 位作者 刘洁 唐功本 叶泽人 石春山 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第1期75-78,共4页
The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The m... The aim of this presentation is to report a new result of afterglow materials. The Y 2O 2S∶Ln 3+ (Ln=Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sm 3+ and Tm 3+ in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method under 1050 ℃ for 6 h have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be useful in finding some new long-lasting phosphors with different colors. 展开更多
关键词 OPTICS yttrium oxysulfide thulium ion samarium ion AFTERGLOW phosphorS rare earths
下载PDF
Properties of Self-recoverable Mechanoluminescence Phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) and Its Information Encryption Application
14
作者 ZHANG Ting WANG Zhijun +3 位作者 WANG Dawei ZHAO Jinxin YANG Zhiping LI Panlai 《发光学报》 EI CAS CSCD 北大核心 2024年第9期1445-1455,共11页
A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)... A novel self-recoverable mechanoluminescent phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+) was developed by the high-tem-perature solid-state reaction method,and its luminescence properties were investigated.Ca_(5)Ga_(6)O_(14)∶Eu^(3+)can produce red mechanoluminescence,and importantly,it shows good repeatability.The mechanoluminescence of Ca_(5)Ga_(6)O_(14)∶Eu^(3+) results from the piezoelectric field generated inside the material under stress,rather than the charge carriers stored in the traps,which can be confirmed by the multiple cycles of mechanoluminescence tests and heat treatment tests.The mechanoluminescence color can be turned from red to green by co-doping varied concentrations of Tb^(3+),which may be meaningful for encrypted letter writing.The encryption scheme for secure communication was devised by harnessing mechanoluminescence patterns in diverse shapes and ASCII codes,which shows good encryption performance.The results suggest that the mechanoluminescence phosphor Ca_(5)Ga_(6)O_(14)∶Eu^(3+),Tb^(3+)may be applied to the optical information encryption. 展开更多
关键词 phosphor MECHANOLUMINESCENCE self-recoverable information encryption
下载PDF
Structural and Luminescent Properties of Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)Green-Emitting Transparent Ceramic Phosphor
15
作者 郝留成 MIAO Xiaojun +4 位作者 LI Kai ZHONG Jianying 涂兵田 YANG Zhangfu 王皓 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期533-540,共8页
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint... A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes. 展开更多
关键词 transparent ceramic phosphor green emission MGALON PHOTOLUMINESCENCE
下载PDF
Pillar effect induced by ultrahigh phosphorous/nitrogen doping enables graphene/MXene film with excellent cycling stability for alkali metal ion storage
16
作者 Meng Qin Yiwei Yao +5 位作者 Junjie Mao Chi Chen Kai Zhu Guiling Wang Dianxue Cao Jun Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期146-156,I0004,共12页
Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and... Graphene's large theoretical surface area and high conductivity make it an attractive anode material for potassium-ion batteries(PIBs).However,its practical application is hindered by small interlayer distance and long ion transfer distance.Herein,this paper aims to address the issue by introducing MXene through a simple and scalable method for assembling graphene and realizing ultrahigh P doping content.The findings reveal that MXene and P-C bonds have a "pillar effect" on the structure of graphene,and the P-C bond plays a primary role.In addition,N/P co-doping introduces abundant defects,providing more active sites for K^(+) storage and facilitating K^(+) adsorption.As expected,the developed ultrahigh phosphorous/nitrogen co-doped flexible reduced graphene oxide/MXene(NPrGM) electrode exhibits remarkable reversible discharge capacity(554 mA hg^(-1) at 0.05 A g^(-1)),impressive rate capability(178 mA h g^(-1) at 2 A g^(-1)),and robust cyclic stability(0.0005% decay per cycle after 10,000 cycles at 2 A g^(-1)).Furthermore,the assembled activated carbon‖NPrGM potassium-ion hybrid capacitor(PIHC) can deliver an impressive energy density of 131 W h kg^(-1) and stable cycling performance with 98.1% capacitance retention after5000 cycles at 1 A g^(-1).Such a new strategy will effectively promote the practical application of graphene materials in PIBs/PIHCs and open new avenues for the scalable development of flexible films based on two-dimensional materials for potential applications in energy storage,thermal interface,and electromagnetic shielding. 展开更多
关键词 GRAPHENE MXene phosphorous doping Pillar effect Potassium-ion batteries
下载PDF
Achieving Narrowed Bandgaps and Blue-Light Excitability in Zero-Dimensional Hybrid Metal Halide Phosphors via Introducing Cation-Cation Bonding
17
作者 Pengfei Fu Shining Geng +7 位作者 Ruixiang Mi Ranyun Wu Guangya Zheng Binbin Su Zhiguo Xia Guangda Niu Jiang Tang Zewen Xiao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期294-300,共7页
Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have ... Zero-dimensional(0D)hybrid metal halides,which consist of organic cations and isolated inorganic metal halide anions,have emerged as phosphors with efficient broadband emissions.However,these materials generally have too wide bandgaps and thus cannot be excited by blue light,which hinders their applications for efficient white light-emitting diodes(WLEDs).The key to achieving a blue-light-excitable 0D hybrid metal halide phosphor is to reduce the fundamental bandgap by rational chemical design.In this work,we report two designed hybrid copper(I)iodides,(Ph_(3)MeP)_(2)Cu_(4)I_(6)and(Cy_(3)MeP)_(2)Cu_(4)I_(6),as blue-light-excitable yellow phosphors with ultrabroadband emission.In these compounds,the[Cu_(4)I_(6)]^(2-)anion forms an I6 octahedron centered on a cationic Cu_(4)tetrahedron.The strong cation-cation bonding within the unique cationic Cu_(4)tetrahedra enables significantly lowered conduction band minimums and thus narrowed bandgaps,as compared to other reported hybrid copper(I)iodides.The ultrabroadband emission is attributed to the coexistence of free and self-trapped excitons.The WLED using the[Cu_(4)I_(6)]^(2-)anion-based single phosphor shows warm white light emission,with a high luminous efficiency of 65 Im W^(-1)and a high color rendering index of 88.This work provides strategies to design narrow-bandgap 0D hybrid metal halides and presents two first examples of blue-light-excitable 0D hybrid metal halide phosphors for efficient WLEDs. 展开更多
关键词 blue-light-excitable cation-cation bonding hybrid metal halide phosphor ZERO-DIMENSIONAL
下载PDF
Fabrication of YAG:Ce^(3+) and YAG:Ce^(3+),Sc^(3+) Phosphors by Spark Plasma Sintering Technique
18
作者 周卫新 娄朝刚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期255-260,共6页
In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower ... In this study,a single-doped phosphors yttrium aluminum garnet(Y_(3)Al_(5)O_(12),YAG):Ce^(3+),single-doped YAG:Sc^(3+),and double-doped phosphors YAG:Ce^(3+),Sc^(3+) were prepared by spark plasma sintering(SPS)(lower than 1 200℃).The characteristics of synthesized phosphors were determined using scanning electron microscopy(SEM),X-ray diffraction(XRD),and fluorescence spectroscopy.During SPS,the lattice structure of YAG was maintained by the added Ce^(3+) and Sc^(3+).The emission wavelength of YAG:Ce^(3+) prepared from SPS(425-700 nm) was wider compared to that of YAG:Ce^(3+) prepared from high-temperature solid-state reaction(HSSR)(500-700 nm).The incorporation of low-dose Sc^(3+) in YAG:Ce^(3+) moved the emission peak towards the short wavelength. 展开更多
关键词 high-temperature solid-state reaction spark plasma sintering yttrium aluminum garnet phosphorS
下载PDF
Durable hierarchical phosphorus‐doped biphase MoS_(2)electrocatalysts with enhanced H^(*)adsorption
19
作者 Yongteng Qian Jianmin Yu +4 位作者 Zhiyi Lyu Qianwen Zhang Tae Hyeong Lee Huan Pang Dae Joon Kang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期104-114,共11页
Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)na... Phase engineering is an efficient strategy for enhancing the kinetics of electrocatalytic reactions.Herein,phase engineering was employed to prepare high‐performance phosphorous‐doped biphase(1T/2H)MoS_(2)(P‐BMS)nanoflakes for hydrogen evolution reaction(HER).The doping of MoS_(2)with P atoms modifies its electronic structure and optimizes its electrocatalytic reaction kinetics,which significantly enhances its electrical conductivity and structural stability,which are verified by various characterization tools,including X‐ray photoelectron spectroscopy,high‐resolution transmission electron microscopy,X‐ray absorption near‐edge spectroscopy,and extended X‐ray absorption fine structure.Moreover,the hierarchically formed flakes of P‐BMS provide numerous catalytic surface‐active sites,which remarkably enhance its HER activity.The optimized P‐BMS electrocatalysts exhibit low overpotentials(60 and 72 mV at 10 mA cm^(−2))in H_(2)SO_(4)(0.5 M)and KOH(1.0 M),respectively.The mechanism of improving the HER activity of the material was systematically studied using density functional theory calculations and various electrochemical characterization techniques.This study has shown that phase engineering is a promising strategy for enhancing the H*adsorption of metal sulfides. 展开更多
关键词 1T/2H MoS_(2) density functional theory ELECTROCATALYSTS phase engineering phosphorous doping
下载PDF
The KEu(WO_(4))_(2)Red Phosphor Co-doped with Li^(+)and SO_(4)^(2-)for Synergistic Enhancement of High Efficiency and Thermal Stability
20
作者 ZHU Hai YUAN Mengzhen +3 位作者 ZHENG Liangjian FAN Jia PENG Xinhao ZHANG Jun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1391-1396,共6页
A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and the... A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li~+and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-). 展开更多
关键词 sol-gel fluorescence phosphorS KEu(WO_4)_2 Li~+ SO_4~(2-)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部